CSE390D—Introduction to Discrete Math Homework #5 (induction) due: in class, Monday, 11/4/24

You are to complete the following problems.

- 1. Problem 8 (see attached)
- 2. Problem 10 (see attached)
- 3. Problem 16 (see attached)
- 4. Problem 20 (see attached)
- 5. Assume that a chocolate bar consists of n squares arranged in a rectangular pattern. The entire bar, and any smaller rectangular piece of the bar, can be broken along a vertical or a horizontal line separating the squares. Assuming that only one piece can be broken at a time, determine how many breaks you must successively make to break the bar into n separate squares. Use strong induction to prove your answer.
- 6. Find the flaw with the following "proof" that aⁿ = 1 for all nonnegative integers n, whenever a is a nonzero real number.
 - a. Basis step: $a^0 = 1$ is true by the definition of a^0 .
 - b. Inductive step: Assume that $a^j = 1$ for all nonnegative integers j with $j \le k$. Then note that: $a^{k+1} = (a^k \cdot a^k)/a^{k-1} = (1 \cdot 1)/1 = 1$

- c) What is the inductive hypothesis?
- d) What do you need to prove in the inductive step?
- e) Complete the inductive step.
- f) Explain why these steps show that this formula is true whenever n is a positive integer.
- 5. Prove that $1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = (n+1)$ (2n+1)(2n+3)/3 whenever n is a nonnegative integer.
- 6. Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ whenever n is a positive integer.
- 7. Prove that $3+3\cdot 5+3\cdot 5^2+\cdots+3\cdot 5^n=3(5^{n+1}-1)/4$ whenever *n* is a nonnegative integer.
- 8. Prove that $2 2 \cdot 7 + 2 \cdot 7^2 \dots + 2(-7)^n = (1 (-7)^{n+1})/4$ whenever *n* is a nonnegative integer.
- a) Find a formula for the sum of the first n even positive integers.
 - b) Prove the formula that you conjectured in part (a).
- 10. a) Find a formula for

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n(n+1)}$$

by examining the values of this expression for small values of n.

- b) Prove the formula you conjectured in part (a).
- 11. a) Find a formula for

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$

by examining the values of this expression for small values of n.

- b) Prove the formula you conjectured in part (a).
- 12. Prove that

$$\sum_{i=0}^{n} \left(-\frac{1}{2} \right)^{j} = \frac{2^{n+1} + (-1)^{n}}{3 \cdot 2^{n}}$$

whenever n is a nonnegative integer.

- 13. Prove that $1^2 2^2 + 3^2 \dots + (-1)^{n-1}n^2 = (-1)^{n-1}n(n+1)/2$ whenever *n* is a positive integer.
- **14.** Prove that for every positive integer n, $\sum_{k=1}^{n} k2^k = (n-1)2^{n+1} + 2$.
- 15. Prove that for every positive integer n,

$$1 \cdot 2 + 2 \cdot 3 + \cdots + n(n+1) = n(n+1)(n+2)/3.$$

16. Prove that for every positive integer n,

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2)$$

= $n(n+1)(n+2)(n+3)/4$.

17. Prove that $\sum_{j=1}^{n} j^4 = n(n+1)(2n+1)(3n^2+3n-1)/30$ whenever *n* is a positive integer.

Use mathematical induction to prove the inequalities in Exercises 18–30.

- 18. Let P(n) be the statement that $n! < n^n$, where n is an integer greater than 1.
 - a) What is the statement P(2)?
 - b) Show that P(2) is true, completing the basis step of the proof.

- c) What is the inductive hypothesis?
- d) What do you need to prove in the inductive step?
- e) Complete the inductive step.
- f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1.
- 19. Let P(n) be the statement that

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$$

where n is an integer greater than 1.

- a) What is the statement P(2)?
- b) Show that P(2) is true, completing the basis step of the proof.
- c) What is the inductive hypothesis?
- d) What do you need to prove in the inductive step?
- e) Complete the inductive step.
- f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1.
- 20. Prove that $3^n < n!$ if n is an integer greater than 6.
- 21. Prove that $2^n > n^2$ if n is an integer greater than 4.
- 22. For which nonnegative integers n is $n^2 \le n!$? Prove your answer
- 23. For which nonnegative integers n is $2n + 3 \le 2^n$? Prove your answer.
- 24. Prove that $1/(2n) \le [1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)]/(2 \cdot 4 \cdot \cdots \cdot 2n)$ whenever n is a positive integer.
- *25. Prove that if h > -1, then $1 + nh \le (1 + h)^n$ for all nonnegative integers n. This is called **Bernoulli's inequality**.
- *26. Suppose that a and b are real numbers with 0 < b < a. Prove that if n is a positive integer, then $a^n b^n \le na^{n-1}(a-b)$.
- *27. Prove that for every positive integer n,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1).$$

28. Prove that $n^2 - 7n + 12$ is nonnegative whenever n is an integer with $n \ge 3$.

In Exercises 29 and 30, H_n denotes the nth harmonic number.

- *29. Prove that $H_{2^n} \le 1 + n$ whenever n is a nonnegative integer.
- *30. Prove that

$$H_1 + H_2 + \cdots + H_n = (n+1)H_n - n.$$

Use mathematical induction in Exercises 31–37 to prove divisibility facts.

- 31. Prove that 2 divides $n^2 + n$ whenever n is a positive integer
- 32. Prove that 3 divides $n^3 + 2n$ whenever n is a positive integer
- 33. Prove that 5 divides $n^5 n$ whenever n is a nonnegative integer
- 34. Prove that 6 divides $n^3 n$ whenever n is a nonnegative integer.