CSE390D—Introduction to Discrete Math Homework #4 (primes, sets) due: in class, Friday, 10/25/24

You are to complete the following problems.

- 1. Find an inverse of 3 modulo 17 (a value that when multiplied by 3 is 1).
- 2. Solve the congruence $2x \equiv 7 \pmod{17}$.
- 3. Show that the positive integers less than 11, except 1 and 10, can be split into pairs of integers such that each pair consists of integers that are inverses of each other modulo 11.
- 4. Use the answer to problem 3 to show that $10! \equiv -1 \pmod{11}$.
- 5. Use Fermat's Little Theorem to compute $3^{302} \mod 5$, $3^{302} \mod 7$, and $3^{302} \mod 11$. Show your work.
- 6. Suppose that $A = \{2, 4, 6\}$, $B = \{2, 6\}$, $C = \{4, 6\}$ and $D = \{4, 6, 8\}$. Determine which of these sets is are subsets of which other of these sets.
- 7. Let $A = \{a, b, c\}$, $B = \{x, y\}$, and $C = \{0, 1\}$. List all set members of:
 - a. A × B x C
 b. C x B x A
 c. C x A x B
 d. B x B x B

8. Let $A = \{a, b, c, d, e\}$, $B = \{a, b, c, d, e, f, g, h\}$. List all set members of:

- a. $A \cup B$ b. $A \cap B$
- c. A B
- d. B A

9. Find the sets A and B A and B if $A - B = \{1, 5, 7, 8\}, B - A = \{2, 10\}$ and $A \cap B$ is $\{3, 6, 9\}/$

- 10. Determine whether each of these functions from Z to Z is one-to-one.
 - a. f(n) = n 1
 - b. $f(n) = n^2 + 1$
 - c. $f(n) = n^3$
 - d. f(n) = ceiling(n/2) (ceiling is smallest integer less than or equal to a value)
- 11. Determine whether f: $\mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ is onto if
 - a. f(m, n) = 2m n. b. $f(m, n) = m^2 - n^2$ c. f(m, n) = m + n + 1d. f(m, n) = |m| - |n|e. $f(m, n) = m^2 - 4$

12. Determine whether each of these functions is a bijection from **R** to **R**.

- a. f(x) = -3x + 4b. $f(x) = -3x^2 + 7$ c. $f(x) = x^5 + 1$
- 13. Prove or disprove that $n^2 + 3n + 1$ is always prime for integers n > 0.
- 14. Prove or disprove that for any prime p > 3, $p \equiv 1 \pmod{6}$ or $p \equiv 5 \pmod{6}$.