YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Thank You CSE 333 Course Staff!

These slides were modified from a CSE 333
lecture with the permission of the instructor.

CSE333, Winter 2023

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers

C++ Smart Pointers
CSE 333 Winter 2023

Instructor: Justin Hsia

Teaching Assistants:

Adina Tung Danny Agustinus
James Froelich Lahari Nidadavolu
Noa Ferman Patrick Ho

Saket Gollapudi Sara Deutscher
Timmy Yang Wei Wu

Zhuochun Liu

Edward Zhang
Mitchell Levy
Paul Han

Tim Mandzyuk
Yiging Wang

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Lecture Outline

+ Introducing STL Smart Pointers
" std::shared ptr
" std::unique ptr

«» Smart Pointer Limitations
" std::weak ptr

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Why Smart Pointers?

+» C++ programming is hard for many reasons, especially its
memory management component which does not exist in
languages like Java or Python

+ According to Microsoft, Smart Pointers are “to help
ensure that programs are free of memory and resource
leaks and are exception-safe”

= “Exception safety” means the code works properly when
exceptions are thrown

YA/ UNIVERSITY of WASHINGTON

L15: C++ Smart Pointers

CSE333, Winter 2023

Goals for Smart Pointers

+ Should automatically handle dynamically-allocated

memory to decrease programming overhead of managing
memory

= Don’t have to explicitly call delete ordelete]

= Memory will deallocate when no longer in use — ties the lifetime
of the data to the smart pointer object

% Should work similarly to using a normal/“raw” pointer
= Expected/usual behavior using —>, *, and [] operators

= Only declaration/construction should be different

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

A Naive Example: ToyPtr

ToyPtr.h

[#ifndef TOYPTR H
fdefine TOYPTR H

template <typename T>
class ToyPtr {

public:
ToyPtr (T* ptr) : ptr (ptr) { } // constructor
~ToyPtr () { delete ptr ; } // destructor
T& operator*() { return *ptr ; } // * operator
T* operator->() { return ptr ; } // -> operator
private:
T* ptr ; // the pointer itself

b g

tendif // TOYPTR H_
. J

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

ToyPtr Class Issue

toyuse.cc

#include "ToyPtr.h"

// We want two pointers!

int main(int argc, char** argv) {
ToyPtr<int> x(new int(5));
ToyPtr<int> y(x);
return EXIT SUCCESS;

}

X pt/r/ ‘-\
- /Z/ . double delete 4
// —/'

Brainstorm ways to design around this. &«

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Smart Pointers Solutions

+ Option 1: Reference Counting
" shared ptr (andweak ptr)

" Track the number of references to an “owned” piece of data and
only deallocate when no smart pointers are managing that data

+» Option 2: Unique Ownership of Memory
" unique ptr

= Disable copying (cctor, op=) to prevent sharing

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Option 1: Reference Counting

+ shared ptrimplements reference counting

® https://cplusplus.com/reference/memory/shared ptr/

= Counts the number of references to a piece of heap-allocated
data and only deallocates it when the reference count reaches O

- This means that it is no longer being used and its lifetime has come to
an end

" Managed abstractly through sharing a resource counter:
- Constructors will create the counter
- Copy constructor and operator= will increment the counter
- Destructor will decrement the counter

https://cplusplus.com/reference/memory/shared_ptr/

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Now using shared ptr

shareduse.cc

#include <memory> // for std::shared ptr
#include <cstdlib> // for EXIT SUCCESS

// We want two pointers!

int main (int argc, char** argv) {
std::shared ptr<int> x(new int(5)); // creates ref count
*X += 3; // usage 1is the same
std::shared ptr<int> y(x); // increments ref count
return EXIT SUCCESS;

}

x |4
/ \/ & No error &

//' no leak! &
Y JZ— ref count: /{//{ 0

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

shared ptrsand STL Containers

+ Use shared ptrsinside STL Containers
= Avoid extra object copies

= Safe to do, since copy/assign maintain a shared reference count
- Copying increments ref count, then original is destructed

sharedve%cc

[vector<std::shared ptr<int> > ; T
vector<s shared ptr<in vec - ll n l.——
vec.push back (std::shared ptr<int>(new int (9)));
vec.push back (std::shared ptr<int>(new int (5)));
vec.push back (std: :shared ptr<int>(new int(7))); / W J A

- B |
int& z = *vecl[l]; ﬂ@ EZ I;?j
std::cout << "z 1is: " << z << std::endl;
std::shared ptr<int> copied(vec[l]); // works!
std::cout << "*copiled: " << *copied << std::endl; (pwm&[:l
vec.pop back(); // removes smart ptr & deallocates 7!

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Option 2: Unique Ownership

+ Aunique ptristhe sole owner of a pointer to memory

® https://cplusplus.com/reference/memory/unigue ptr/

" Enforces uniqueness by disabling copy and assignmeth
(compiler error if these methods are used)

- Will therefore always call de 1 ete on the managed pointer when
destructed

" Asthe sole owner,a unique ptr can choose to transfer or
release ownership of a pointer

https://cplusplus.com/reference/memory/unique_ptr/

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

unique ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor

and assignment operator
" You cannot copy a unique ptr, helping maintain “uniqueness”

or “ownership”

uniquefail.cc
X

[#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

int main (int argc, char** argv) {

std::unique ptr<int> x(new int(5)); // l-argctor (pointer) v
std::unique ptr<int> y(x); // cctor disabled; compiler error %
std::unique ptr<int> z; // default ctor, holds nullptr v
Z = X; // op= disabled; compiler error x

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

unigque ptrsandSTL

+ unique ptrscan also be stored in STL containers!

= Contradiction? STL containers make copies of stored objects and
unique ptrscannot be copied...

+ Recall: why do container operations/methods create extra
copies?
" Generally to move things around in memory/the data structure

" The end result is still one copy of each element — this doesn’t
break the sole ownership notion!

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Passing Ownership

+ As the “owner” of a pointer, unique ptrsshould
be able to remove or transfer its ownership
= release () and reset () free ownership

uniquepass.cc

(int main (int argc, char** argv) { . [ﬁik————ﬂ&-‘\§gr/] 1
— 5

G)unique_ptr<int> X (new int (5));
cout << "x: " << *x << endl;
// Releases ownership and returns a raw pointer
@;unique_ptr<int> y(x.release()); // x gives o
cout << "y: " << *y << endl; v/ deletd

ershig to y

unique ptr<int> z(new int (10)); X

// v gives ownership to z

// z’s reset () deallocates "10" and stores y’s pointer
@z .reset (y.release());

return EXIT SUCCESS;

}

. J

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

unigque ptr and STL Example

+ STL supports transfer ownership of unique ptrs

using move semantics
uniguevec.cc

N\

[(int main (int argc, char** argv) {
std::vector<std::unique ptr<int> > vec;

vec.push back (std::unique ptr<int>(new int(9))); moves instead &
vec.push back (std::unique ptr<int>(new int (5)));

Copying when
vec.push back (std::unique ptr<int>(new int(7)));

chac,; VIRE increased
// z holds 5

int z = *vec[l];

std::cout << "z 1s: " << z << std::endl; vec NI .
A"

// compiler error! : c

std: :unique ptr<int> copied(vec[l]); ’/

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

unigque ptr and Move Semantics

« “Move semantics” (as compared to “Copy semantics”)

move values from one object to another without copying
= https://cplusplus.com/doc/tutorial/classes2/#move

= Useful for optimizing away temporary copies

= STL's use move semantics to transfer ownership of

unigue ptrsinstead of copying _
— uniquemove.cC

... (includes and other examples) o
int main(int argc, char** argv) {
std: :unique ptr<string> a(new string("Hello")):; "Hello"

// moves a to b e(/”’——§\‘\\\

std::unique ptr<string> b= std::move(a); b
// a 1s now nullptr (default ctor of unique ptr) ~—
std::cout << "b: " << *b << std::endl; // "Hello"

return EXIT SUCCESS;

https://cplusplus.com/doc/tutorial/classes2/

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Aside: Smart Pointers and Arrays

« Smart pointers can store arrays as well and will call
delete[] on destruction

uniquearray.cc

[#include <memory> // for std::unique ptr N
#include <cstdlib> // for EXIT SUCCESS

using std::unique ptr;

int main(int argc, char **argv) {
unique ptr<int[]> x(new int[5]);

x[0] = 1;
x[2] = 2;

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Choosing Between Smart Pointers

+ unique ptrs make ownership very clear

= Generally the default choice due to reduced complexity — the
owner is responsible for cleaning up the resource

- Example: would make sense in HW1 & HW2, where we specifically
documented who takes ownership of a resource

" |Less overhead: small and efficient

+ shared ptrsallow for multiple simultaneous owners

= Reference counting allows for “smarter” deallocation but
consumes more space and logic and is trickier to get right

= Common when using more “well-connected” data structure
- Can you think of an example?

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Lecture Outline

% Introducing STL Smart Pointers
" std::shared ptr
" std::unique ptr

+» Smart Pointer Limitations
" std::weak ptr

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Limitations with Smart Pointers

« Smart pointers are only as “smart” as the behaviors that

have been built into their class methods and non-member
functions!

« Limitations we will look at now:

L)

= Can’t tell if pointer is to the heap or not
= Circumventing ownership rules
= Still possible to leak memory!

= Sorting smart pointers [Bonus slides]

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers

Using a Non-Heap Pointer

CSE333, Winter 2023

+» Smart pointers will still call de 1 ete when destructed

#include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv)
int x = 333;

shared ptr<int> pl (&x);

return EXIT SUCCESS;

b/ invald Acl;l'e on o\effmdbf\./

{

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers

CSE333, Winter 2023

Re-using a Raw Pointer (unique ptr)

+ Smart pointers can’t tell if you are re-using a raw pointer

[#include <cstdlib>
#include <memory>

using std::unique ptr;

int main(int argc, char** argv)
int* x = new 1int (333);

unique ptr<int> pl(x);
unique ptr<int> p2(x);

return EXIT SUCCESS;
}

{

=

N\

[N

I\ double delete 4

YA/ UNIVERSITY of WASHINGTON

L15: C++ Smart Pointers

CSE333, Winter 2023

Re-using a Raw Pointer (shared ptr)

[#include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv)
int* x = new 1int (333);

shared ptr<int> pl (x);
shared ptr<int> p2(x);

return EXIT SUCCESS;
}

N\

\

[N

+» Smart pointers can’t tell if you are re-using a raw pointer

/l
ref count=1

:////////,//7

&

ref count=1
I\ double delete

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Solution: Don’t Use Raw Pointer Variables

+ Smart pointers replace your raw pointers; passing new
and then using the copy constructor is safer:

~

(#include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv) {
e e —————

shared ptr<int> pl(new int (333));
shared ptr<int> p2(pl):;

return EXIT SUCCESS;
}

YA/ UNIVERSITY of WASHINGTON

L15: C++ Smart Pointers

Caution Using ge t()

+» Smart pointers still have functions to return the raw
pointer without losing its ownership
= get() can circumvent ownership rules!

\

7~

#include <cstdlib>
#include <memory>

// Same as re-using a raw pointer
int main(int argc, char** argv) {

unique ptr<int> pl(new int(5));
unique ptr<int> p2(pl.get());

return EXIT SUCCESS;
}

"

CSE333, Winter 2023

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Cycle of shared ptrs

+ What happens when main returns? memory [ec k ./
nodes net deallocated

(#include <cstdlib>
#include <memory>

using std::shared ptr;

struct A { ‘Z_,Z_'L 1.

shared ptr<A> next; | é=le=e—dlen o o
shared ptr<A> prev;

bg

int main(int argc, char** argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head; e e e e

3
()
»
ﬂ
3
()
"
ﬂ

return EXIT SUCCESS;

J

sharedcycle.cc

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Solution: weak ptrs

+ weak ptrissimilartoashared ptr butdoesn’t
affect the reference count

®m https://cplusplus.com/reference/memory/weak ptr/

= Not really a pointer as it cannot be dereferenced (!) — would
break our notion of shared ownership

- To deference, you first use the Lock method to get an associated
shared ptr

https://cplusplus.com/reference/memory/weak_ptr/

YA/ UNIVERSITY of WASHINGTON

L15: C++ Smart Pointers

CSE333, Winter 2023

Breaking the Cycle with weak ptr

+ Now what happens when main returns? No memory leak./

[#include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;

b g

return EXIT SUCCESS;

int main(int argc, char** argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

~

J

weakcycle.cc

— s S R

CSE333, Winter 2023

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers

Dangling weak ptrs

+ weak ptrsdon’tchange reference count and can

become “dangling”

= Data referenced may have been delete’d
weakrefcount.cc

(includes and other examples)
int main(int argc, char** argv) {
std: :weak ptr<int> w;

{ // temporary inner scope
std: :shared ptr<int> y(new int (10));
w = vy; // assignment operator of weak ptr takes a shared ptr

std::shared ptr<int> x = w.lock(); // "promoted" shared ptr

std::cout << *x << " " <K< w.expired() << std::endl;

}
std::cout << w.expired() << std::endl;

w.lock(); // returns a nullptr

return EXIT SUCCESS;
}

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Summary of Smart Pointers

+ A shared ptr utilizes reference counting for multiple
owners of an object in memory
" deletesan object once its reference count reaches zero

+ Aweak ptr works with a shared object but doesn’t
affect the reference count

= Can’t actually be dereferenced, but can check if the object still
exists and can get a shared ptr fromthe weak ptrifitdoes

+ Aunigque ptr takes ownership of a pointer

= Cannot be copied, but can be moved

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Some Important Smart Pointer Methods

Visit http://www.cplusplus.com/ for more information on these!

¢ std::unique ptr<T> U;

"= U.get() Returns the raw pointer U is managing
" U.release () U stops managing its raw pointer and returns the raw pointer
" U.reset (qg) U cleans up its raw pointer and takes ownership of q
+ std::shared ptr<T> 5;
"= S.get () Returns the raw pointer S is managing

" S.use count () Returnsthe reference count

" S.unique () Returns true iff S.use_count() ==
+ std::iweak ptrIT> W;

" W.lock () Constructs a shared pointer based off of W and returns it
" W.use count () Returnsthe reference count

" W.expired() Returns true iff W is expired (W.use_count() == 0)

http://www.cplusplus.com/

W UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

BONUS SLIDES

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

Smart Pointers and “<”

+ Smart pointers implement some comparison operators,
including operator<

L)

"= However, it doesn’t invoke operator< on the pointed-to

objects; instead, it just promises a stable, strict ordering (probably
based on the pointer address, not the pointed-to-value)

+» To use the sort () algorithm on a container like
vector, you need to provide a comparison function

+ To use a smart pointer in a sorted container like map,
you need to provide a comparison function when you
declare the container

YA/ UNIVERSITY of WASHINGTON L15: C++ Smart Pointers CSE333, Winter 2023

unique ptr and STL Sorting

uniquevecsort.cc

(using namespace std; Compare poirted=to h

bool sortfunction(const unique ptr<int> &x, velues
const unique ptr<int> &y) { return *x < *y; }
void printfunction (unique ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push_back?unique_ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new int (5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort (vec.begin (), vec.end()); <
cout << "Sorted:" << endl; g&ﬂm\‘%rsm#

for each(vec.begin(), vec.end(), &printfunction); Jone ViG move senarstfcs

// better: sorts based on the pointed-to values
sort (vec.begin(), vec.end(), é&sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

return EXIT SUCCESS;

YA/ UNIVERSITY of WASHINGTON

L15: C++ Smart Pointers

unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap

= Reminder: a map internally stores keys in sorted order
- Iterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

+ Compare (the 3@ template) parameter:

= “A binary predicate that takes two element keys as arguments
and returns a bool. This can be a function pointer or a function
object.”

« bool fptr(Tls& lhs, Tl& rhs); OR member function
bool operator () (const Tl& lhs, const T1& rhs);

