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Lecture Outline

+ Introducing STL Smart Pointers
" std::shared ptr
" std::unique ptr

«» Smart Pointer Limitations
" std::weak ptr
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Why Smart Pointers?

+» C++ programming is hard for many reasons, especially its
memory management component which does not exist in
languages like Java or Python

+ According to Microsoft, Smart Pointers are “to help
ensure that programs are free of memory and resource
leaks and are exception-safe”

= “Exception safety” means the code works properly when
exceptions are thrown
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Goals for Smart Pointers

+ Should automatically handle dynamically-allocated

memory to decrease programming overhead of managing
memory

= Don’t have to explicitly call delete ordelete ]

= Memory will deallocate when no longer in use — ties the lifetime
of the data to the smart pointer object

% Should work similarly to using a normal/“raw” pointer
= Expected/usual behavior using —>, *, and [ ] operators

= Only declaration/construction should be different
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A Naive Example: ToyPtr

ToyPtr.h

[ #ifndef TOYPTR H
fdefine TOYPTR H

template <typename T>
class ToyPtr {

public:
ToyPtr (T* ptr) : ptr (ptr) { } // constructor
~ToyPtr () { delete ptr ; } // destructor
T& operator*() { return *ptr ; } // * operator
T* operator->() { return ptr ; } // -> operator
private:
T* ptr ; // the pointer itself

b g

tendif // TOYPTR H_
. J
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ToyPtr Class Issue

toyuse.cc

#include "ToyPtr.h"

// We want two pointers!

int main(int argc, char** argv) {
ToyPtr<int> x(new int(5));
ToyPtr<int> y(x);
return EXIT SUCCESS;

}

X pt/r/ ‘-\
- /Z/ . double delete 4
// —/'

Brainstorm ways to design around this. &«
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Smart Pointers Solutions

+ Option 1: Reference Counting
" shared ptr (andweak ptr)

" Track the number of references to an “owned” piece of data and
only deallocate when no smart pointers are managing that data

+» Option 2: Unique Ownership of Memory
" unique ptr

= Disable copying (cctor, op=) to prevent sharing
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Option 1: Reference Counting

+ shared ptrimplements reference counting

® https://cplusplus.com/reference/memory/shared ptr/

= Counts the number of references to a piece of heap-allocated
data and only deallocates it when the reference count reaches O

- This means that it is no longer being used and its lifetime has come to
an end

" Managed abstractly through sharing a resource counter:
- Constructors will create the counter
- Copy constructor and operator= will increment the counter
- Destructor will decrement the counter


https://cplusplus.com/reference/memory/shared_ptr/
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Now using shared ptr

shareduse.cc

#include <memory> // for std::shared ptr
#include <cstdlib> // for EXIT SUCCESS

// We want two pointers!

int main (int argc, char** argv) {
std::shared ptr<int> x(new int(5)); // creates ref count
*X += 3; // usage 1is the same
std::shared ptr<int> y(x); // increments ref count
return EXIT SUCCESS;

}

x |4
/ \/ & No error &

//' no leak! &
Y JZ— ref count: /{//{ 0
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shared ptrsand STL Containers

+ Use shared ptrsinside STL Containers
= Avoid extra object copies

= Safe to do, since copy/assign maintain a shared reference count
- Copying increments ref count, then original is destructed

sharedve%cc

[ vector<std::shared ptr<int> > ; T
vector<s shared ptr<in vec - ll n l.——
vec.push back (std::shared ptr<int>(new int (9)));
vec.push back (std::shared ptr<int>(new int (5)));
vec.push back (std: :shared ptr<int>(new int(7))); / W J A

- B |
int& z = *vecl[l]; ﬂ@ EZ I;?j
std::cout << "z 1is: " << z << std::endl;
std::shared ptr<int> copied(vec[l]); // works!
std::cout << "*copiled: " << *copied << std::endl; (pwm&[:l
vec.pop back(); // removes smart ptr & deallocates 7!
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Option 2: Unique Ownership

+ Aunique ptristhe sole owner of a pointer to memory

® https://cplusplus.com/reference/memory/unigue ptr/

" Enforces uniqueness by disabling copy and assignmeth
(compiler error if these methods are used)

- Will therefore always call de 1 ete on the managed pointer when
destructed

" Asthe sole owner,a unique ptr can choose to transfer or
release ownership of a pointer


https://cplusplus.com/reference/memory/unique_ptr/
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unique ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor

and assignment operator
" You cannot copy a unique ptr, helping maintain “uniqueness”

or “ownership”

uniquefail.cc
X

[ #include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

int main (int argc, char** argv) {

std::unique ptr<int> x(new int(5)); // l-argctor (pointer) v
std::unique ptr<int> y(x); // cctor disabled; compiler error %
std::unique ptr<int> z; // default ctor, holds nullptr v
Z = X; // op= disabled; compiler error x

return EXIT SUCCESS;
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unigque ptrsandSTL

+ unique ptrscan also be stored in STL containers!

= Contradiction? STL containers make copies of stored objects and
unique ptrscannot be copied...

+ Recall: why do container operations/methods create extra
copies?
" Generally to move things around in memory/the data structure

" The end result is still one copy of each element — this doesn’t
break the sole ownership notion!
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Passing Ownership

+ As the “owner” of a pointer, unique ptrsshould
be able to remove or transfer its ownership
= release () and reset () free ownership

uniquepass.cc

(int main (int argc, char** argv) { . [ﬁik————ﬂ&-‘\§gr/] 1
— 5

G)unique_ptr<int> X (new int (5));
cout << "x: " << *x << endl;
// Releases ownership and returns a raw pointer
@;unique_ptr<int> y(x.release()); // x gives o
cout << "y: " << *y << endl; v/ deletd

ershig to y

unique ptr<int> z(new int (10)); X

// v gives ownership to z

// z’s reset () deallocates "10" and stores y’s pointer
@z .reset (y.release());

return EXIT SUCCESS;

}

. J
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unigque ptr and STL Example

+ STL supports transfer ownership of unique ptrs

using move semantics
uniguevec.cc

N\

[(int main (int argc, char** argv) {
std::vector<std::unique ptr<int> > vec;

vec.push back (std::unique ptr<int>(new int(9))); moves instead &
vec.push back (std::unique ptr<int>(new int (5)));

Copying when
vec.push back (std::unique ptr<int>(new int(7)));

chac,; VIRE increased
// z holds 5

int z = *vec[l];

std::cout << "z 1s: " << z << std::endl; vec NI .
A"

// compiler error! : c

std: :unique ptr<int> copied(vec[l]); ’/

return EXIT SUCCESS;
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unigque ptr and Move Semantics

« “Move semantics” (as compared to “Copy semantics”)

move values from one object to another without copying
= https://cplusplus.com/doc/tutorial/classes2/#move

= Useful for optimizing away temporary copies

= STL's use move semantics to transfer ownership of

unigue ptrsinstead of copying _
— uniquemove.cC

... (includes and other examples) o
int main(int argc, char** argv) {
std: :unique ptr<string> a(new string("Hello")):; "Hello"

// moves a to b e(/”’——§\‘\\\

std::unique ptr<string> b= std::move(a); b
// a 1s now nullptr (default ctor of unique ptr) ~—
std::cout << "b: " << *b << std::endl; // "Hello"

return EXIT SUCCESS;



https://cplusplus.com/doc/tutorial/classes2/
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Aside: Smart Pointers and Arrays

« Smart pointers can store arrays as well and will call
delete[] on destruction

uniquearray.cc

[ #include <memory> // for std::unique ptr N
#include <cstdlib> // for EXIT SUCCESS

using std::unique ptr;

int main(int argc, char **argv) {
unique ptr<int[]> x(new int[5]);

x[0] = 1;
x[2] = 2;

return EXIT SUCCESS;
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Choosing Between Smart Pointers

+ unique ptrs make ownership very clear

= Generally the default choice due to reduced complexity — the
owner is responsible for cleaning up the resource

- Example: would make sense in HW1 & HW2, where we specifically
documented who takes ownership of a resource

" |Less overhead: small and efficient

+ shared ptrsallow for multiple simultaneous owners

= Reference counting allows for “smarter” deallocation but
consumes more space and logic and is trickier to get right

= Common when using more “well-connected” data structure
- Can you think of an example?
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Lecture Outline

% Introducing STL Smart Pointers
" std::shared ptr
" std::unique ptr

+» Smart Pointer Limitations
" std::weak ptr
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Limitations with Smart Pointers

« Smart pointers are only as “smart” as the behaviors that

have been built into their class methods and non-member
functions!

« Limitations we will look at now:

L)

= Can’t tell if pointer is to the heap or not
= Circumventing ownership rules
= Still possible to leak memory!

= Sorting smart pointers [Bonus slides]
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+» Smart pointers will still call de 1 ete when destructed

#include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv)
int x = 333;

shared ptr<int> pl (&x);

return EXIT SUCCESS;

b/ invald Acl;l'e on o\effmdbf\./

{
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Re-using a Raw Pointer (unique ptr)

+ Smart pointers can’t tell if you are re-using a raw pointer

[ #include <cstdlib>
#include <memory>

using std::unique ptr;

int main(int argc, char** argv)
int* x = new 1int (333);

unique ptr<int> pl(x);
unique ptr<int> p2(x);

return EXIT SUCCESS;
}

{

=

N\

[N

I\ double delete 4
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Re-using a Raw Pointer (shared ptr)

[ #include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv)
int* x = new 1int (333);

shared ptr<int> pl (x);
shared ptr<int> p2(x);

return EXIT SUCCESS;
}

N\

\

[N

+» Smart pointers can’t tell if you are re-using a raw pointer

/l
ref count=1

:////////,//7

&

ref count=1
I\ double delete
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Solution: Don’t Use Raw Pointer Variables

+ Smart pointers replace your raw pointers; passing new
and then using the copy constructor is safer:

~

(#include <cstdlib>
#include <memory>

using std::shared ptr;

int main(int argc, char** argv) {
e e —————

shared ptr<int> pl(new int (333));
shared ptr<int> p2(pl):;

return EXIT SUCCESS;
}
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Caution Using ge t()

+» Smart pointers still have functions to return the raw
pointer without losing its ownership
= get() can circumvent ownership rules!

\

7~

#include <cstdlib>
#include <memory>

// Same as re-using a raw pointer
int main(int argc, char** argv) {

unique ptr<int> pl(new int(5));
unique ptr<int> p2(pl.get());

return EXIT SUCCESS;
}

"

CSE333, Winter 2023
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Cycle of shared ptrs

+ What happens when main returns? memory [ec k ./
nodes net deallocated

(#include <cstdlib>
#include <memory>

using std::shared ptr;

struct A { ‘Z_,Z_'L 1.

shared ptr<A> next; | é=le=e—dlen o o
shared ptr<A> prev;

bg

int main(int argc, char** argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head; e e e e

3
()
»
ﬂ
3
()
"
ﬂ

return EXIT SUCCESS;

J

sharedcycle.cc
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Solution: weak ptrs

+ weak ptrissimilartoashared ptr butdoesn’t
affect the reference count

®m https://cplusplus.com/reference/memory/weak ptr/

= Not really a pointer as it cannot be dereferenced (!) — would
break our notion of shared ownership

- To deference, you first use the Lock method to get an associated
shared ptr


https://cplusplus.com/reference/memory/weak_ptr/
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Breaking the Cycle with weak ptr

+ Now what happens when main returns? No memory leak./

[ #include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;

b g

return EXIT SUCCESS;

int main(int argc, char** argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

~

J

weakcycle.cc

— s S R
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Dangling weak ptrs

+ weak ptrsdon’tchange reference count and can

become “dangling”

= Data referenced may have been delete’d
weakrefcount.cc

(includes and other examples)
int main(int argc, char** argv) {
std: :weak ptr<int> w;

{ // temporary inner scope
std: :shared ptr<int> y(new int (10));
w = vy; // assignment operator of weak ptr takes a shared ptr

std::shared ptr<int> x = w.lock(); // "promoted" shared ptr

std::cout << *x << " " <K< w.expired() << std::endl;

}
std::cout << w.expired() << std::endl;

w.lock(); // returns a nullptr

return EXIT SUCCESS;
}
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Summary of Smart Pointers

+ A shared ptr utilizes reference counting for multiple
owners of an object in memory
" deletesan object once its reference count reaches zero

+ Aweak ptr works with a shared object but doesn’t
affect the reference count

= Can’t actually be dereferenced, but can check if the object still
exists and can get a shared ptr fromthe weak ptrifitdoes

+ Aunigque ptr takes ownership of a pointer

= Cannot be copied, but can be moved
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Some Important Smart Pointer Methods

Visit http://www.cplusplus.com/ for more information on these!

¢ std::unique ptr<T> U;

"= U.get() Returns the raw pointer U is managing
" U.release () U stops managing its raw pointer and returns the raw pointer
" U.reset (qg) U cleans up its raw pointer and takes ownership of q
+ std::shared ptr<T> 5;
"= S.get () Returns the raw pointer S is managing

" S.use count () Returnsthe reference count

" S.unique () Returns true iff S.use_count() ==
+ std::iweak ptrIT> W;

" W.lock () Constructs a shared pointer based off of W and returns it
" W.use count () Returnsthe reference count

" W.expired() Returns true iff W is expired (W.use_count() == 0)


http://www.cplusplus.com/
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BONUS SLIDES
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Smart Pointers and “<”

+ Smart pointers implement some comparison operators,
including operator<

L)

"= However, it doesn’t invoke operator< on the pointed-to

objects; instead, it just promises a stable, strict ordering (probably
based on the pointer address, not the pointed-to-value)

+» To use the sort () algorithm on a container like
vector, you need to provide a comparison function

+ To use a smart pointer in a sorted container like map,
you need to provide a comparison function when you
declare the container
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unique ptr and STL Sorting

uniquevecsort.cc

(using namespace std; Compare  poirted=to h

bool sortfunction(const unique ptr<int> &x, velues
const unique ptr<int> &y) { return *x < *y; }
void printfunction (unique ptr<int> &x) { cout << *x << endl; }

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push_back?unique_ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new int (5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort (vec.begin (), vec.end()); <
cout << "Sorted:" << endl; g&ﬂm\‘%rsm#

for each(vec.begin(), vec.end(), &printfunction); Jone ViG move senarstfcs

// better: sorts based on the pointed-to values
sort (vec.begin(), vec.end(), é&sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

return EXIT SUCCESS;
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unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap

= Reminder: a map internally stores keys in sorted order
- Iterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

+ Compare (the 3@ template) parameter:

= “A binary predicate that takes two element keys as arguments
and returns a bool. This can be a function pointer or a function
object.”

« bool fptr(Tls& lhs, Tl& rhs); OR member function
bool operator () (const Tl& lhs, const T1& rhs);




