
C++ Casting
CSE 390C



C-Style Casting

 Simple syntax that we’ve seen in Java and C

 Converts primitive data types to another (ex. double to int)

 Can also be used to convert between pointers of different types

 The data being pointed to will just be interpreted differently

 Still valid in C++, but bad style…



C++ Casting

 Four different types of casts:

 static_cast<type>(expression)

 dynamic_cast<type>(expression)

 const_cast<type>(expression)

 reinterpret_cast<type>(expression)

 Makes your intent clearer for readers of your code!



static_cast

 Used to:

 Convert class pointers to a related 

type (within the same class 

hierarchy)

 Be careful casting down a class 

hierarchy

 Convert between different primitive 

types

 static_casts are checked at 

compile time



dynamic_cast

 Used to:

 Convert pointers/references of related 

types (within the same class hierarchy)

 At compile time, verify that the pointers 

have related types

 At run time, if casting from base class to 

derived class, verify that object is 
actually an instance of the derived 

class.

 Used mainly for handling 

polymorphism/inheritance



const_cast

 Used to add or strip “const-ness” of a pointer or reference.

 Often, regarded as bad style (and even dangerous), since violates the 

intent and const-ness of the variable

 Striping const-ness:

 If variable being pointed to was defined as const, this behavior is undefined!

 Otherwise, can modify underlying data through this pointer/reference



const_cast cont.

 Adding const-ness:

 Only gives this pointer/reference const-ness, but others can still modify the data 

this points to/references



reinterpret_cast

 Used to convert between incompatible types

 Ex. int to a pointer or vice-versa

 Also, can convert between incompatible pointer types

 Low-level bit pattern is kept the same, just interpreted differently

 Dangerous!!!



Implicit Conversion

 When a variable is used in the context of a different type (without 

an explicit cast)

 The compiler will then attempt to infer the correct conversion

 The compiler can also take advantage of single parameter class 

constructors

 ex. (const char*) -> string


	Slide 1: C++ Casting
	Slide 2: C-Style Casting
	Slide 3: C++ Casting
	Slide 4: static_cast
	Slide 5: dynamic_cast
	Slide 6: const_cast
	Slide 7: const_cast cont.
	Slide 8: reinterpret_cast
	Slide 9: Implicit Conversion

