C++ Casting

CSESZ8 e

C-Style Casting

var) 3.90;

» Simple syntax that we've seen in Java and C
» Converts primitive data types to another (ex. double O int)
» Can also be used to convert between pointers of different types

» The data being pointed to will just be interpreted differently
» Still valid in C++, but bad style...

C++ Casting

» Four different types of casts:
P static cast<typc MIEusENE i
» dynamic cast<type> (expression)
» const cast<type> (expression)

» reinterpret cast<type> (expression)

» Makes your intent clearer for readers of your code!

class unrelated { };

> Useii class base { };

class derived : public base { };

/f non-pointer conversion
int var = static cast<int»(3.98);

base b;
derived d;

/f invalid type conversion

unrelated* unrelated ptr = static cast<unrelated®*»>(&b);
/f valid static cast

base* base ptr = static cast<base*»(&d);

// valid static cast, but dangerous

derived* derived ptr = static cast<derived*>(&b);

- -

dynamic cast

Used to:
base b;

» Convert pointers/references of related derived d;
types (within the same class hierarchy)

At compile time, verity that the pointers unrelated* unrelated ptr = <unrelated*>(8b);
have related types
base* base ptr = <base*>(&d);
At run fime, if casfing from base class to derived* derived ptr - <derived*>(base_ptr);
derived class, verify that object is) ,
] J ase_ptr = &b;
actually an instance of the derived derived ptr - <derived*>(base ptr);

class.

Used mainly for handling
polymorphism/inheritance

CONSt CElus

» Used to add or strip “const-ness” of a pointer or reference.

» Often, regarded as bad style (and even dangerous), since violates the
intent and const-ness of the variable

» Striping const-ness:
» If variable being pointed to was defined as const, this behavior is undefined!

» Otherwise, can modify underlying data through this pointer/reference

X = 123; & b = a;
& y = <int&»(x);

yis b++;

const cast cont.

» Adding const-ness:

» Only gives this pointer/reference const-ness, but others can still modify the data
this points to/references

reinterprcitiue .

» Used to convert between incompatible types

» EX. int to a pointer or vice-versa

» Also, can convert between incompatible pointer types
» Low-level bit pattern is kept the same, just interpreted differently
» Dangerousl!!

¥ = 345;
std::string*®* str = <std:istring®»(8&x);

std::cout<< *str << std::endl;

Implicit Conversion

¥ = 65.5;
C = X;

» When a variable is used in the context of a different type (without
an explicit cast)

» The compiler will then attempt to infer the correct conversion

» The compiler can also take advantage of single parameter class
consfructors

» eX. (const char*) -> string

foo(std::string str);

foo("this a string literal™);

	Slide 1: C++ Casting
	Slide 2: C-Style Casting
	Slide 3: C++ Casting
	Slide 4: static_cast
	Slide 5: dynamic_cast
	Slide 6: const_cast
	Slide 7: const_cast cont.
	Slide 8: reinterpret_cast
	Slide 9: Implicit Conversion

