
Data paths and control logic 

!  Building larger digital systems 
"  Include data, not just control inputs 

!  An example 
!  Building up toward project - MasterMind 
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Data-path and control 

!  Digital hardware systems = data-path + control 
"  datapath: registers, counters, combinational functional units (e.g., 

ALU), communication (e.g., busses) 
"  control: FSM generating sequences of control signals that 

instructs datapath what to do next 
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Digital combinational lock 

!  Door combination lock: 
"  punch in 3 values in sequence and the door opens; if there is an 

error the lock must be reset; once the door opens the lock must be 
reset 

"  inputs: sequence of input values, reset 
"  outputs: door open/close 
"  memory: must remember combination or always have it available 

"  open questions: how do you set the internal combination? 
!  stored in registers (how loaded?) 
!  hardwired via switches set by user 
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Implementation in software 

integer combination_lock ( ) { 
integer v1, v2, v3; 

integer error = 0; 
static integer c[3] = 3, 4, 2; 

while (!new_value( )); 

v1 = read_value( ); 
if (v1 != c[1]) then error = 1; 

while (!new_value( )); 

v2 = read_value( ); 
if (v2 != c[2]) then error = 1; 

while (!new_value( )); 

v3 = read_value( ); 
if (v2 != c[3]) then error = 1; 

if (error == 1) then return(0); else return (1); 

} 



Determining details of the specification 

!  How many bits per input value? 
!  How many values in sequence? 
!  How do we know a new input value is entered? 
!  What are the states and state transitions of the system? 
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Digital combination lock state diagram 

!  States: 5 states 
"  represent point in execution of machine 
"  each state has outputs 

!  Transitions: 6 from state to state, 5 self transitions, 1 global 
"  changes of state occur when clock says its ok 
"  based on value of inputs 

!  Inputs: reset, new, results of comparisons 
!  Output: open/closed 
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Data-path and control structure 

!  Data-path 
"  storage registers for combination values 
"  multiplexer 
"  comparator 

!  Control 
"  finite-state machine controller 
"  control for data-path (which value to compare) 
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State table for combination lock 

!  Finite-state machine 
"  refine state diagram to take internal structure into account 
"  state table ready for encoding 
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reset  new  equal  state  state  mux  open/closed 
1  –  –  –  S1  C1  closed 
0  0  –  S1  S1  C1  closed 
0  1  0  S1  ERR  –  closed 
0  1  1  S1  S2  C2  closed 
... 
0  1  1  S3  OPEN  –  open 
...   

next 



Encodings for combination lock 

!  Encode state table 
"  state can be: S1, S2, S3, OPEN, or ERR 

!  needs at least 3 bits to encode: 000, 001, 010, 011, 100 
!  and as many as 5: 00001, 00010, 00100, 01000, 10000 
!  choose 4 bits: 0001, 0010, 0100, 1000, 0000 

"  output mux can be: C1, C2, or C3 
!  needs 2 to 3 bits to encode 
!  choose 3 bits: 001, 010, 100 

"  output open/closed can be: open or closed 
!  needs 1 or 2 bits to encode 
!  choose 1 bit: 1, 0 
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reset  new  equal  state  state  mux  open/closed 
1  –  –  –  0001  001  0 
0  0  –  0001  0001  001  0 
0  1  0  0001  0000  –  0 
0  1  1  0001  0010  010  0 
... 
0  1  1  0100  1000  –  1 
...   

next 

mux is identical to last 3 bits of state 
open/closed is identical to first bit of state 
therefore, we do not even need to implement  
FFs to hold state, just use outputs 
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Data-path implementation for combination lock 

!  Multiplexer 
"  easy to implement as combinational logic when few inputs 
"  logic can easily get too big for most PLDs 
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Digital combination lock (new data-path) 

!  Decrease number of inputs 
!  Remove 3 code digits as inputs 

"  use code registers 
"  make them loadable from value 
"  need 3 load signal inputs (net gain in input ( 4 * 3 ) – 3 = 9) 

!  could be done with 2 signals and decoder 
(ld1, ld2, ld3, hold) 

Autumn 2014 CSE390C - IX - Data Paths and Control Logic 11 

C1 C2 C3 

comparator value 
equal 

multiplexer 

mux  
control 

4 

4 4 4 

4 

ld1 ld2 ld3 



Sequential logic case studies summary 

!  FSM design 
"  understanding the problem 
"  generating state diagram 
"  communicating state machines 
"  implementation using PLDs 

!  Case studies in lecture and lab 
"  understand I/O behavior 
"  draw diagrams 
"  enumerate states for the "goal" 
"  expand with error conditions 
"  reuse states whenever possible 
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Lab 8 – final project 

!  Much more work than labs 1-7 
!  You have from Nov 19 at 2:30 to Dec 8 at 2:30 – 19 days 
!  You will likely need all 19 of them, so start early 

!  For CSE390C, everyone will do the “MasterMind” (option 2) 
"  No other options will be accepted 
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MasterMind game 

!  How-to-play video may be helpful 
"  http://www.theboardgamefamily.com/2011/03/become-a-mastermind/ 

!  Basic idea 
"  Set a secret pattern of colored pegs 
"  Player guesses pattern 
"  Report on guesses 

!  Number of correct color in correct position 
!  Number of correct color in incorrect position 

"  Keep guessing until secret pattern is found 
or number of guesses allowed is exhausted 
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First steps 

!  How many colors (4) and positions (4)? 
"  2 bits to represent each 

!  Secret code of 4 colors 
"  2 bits each – 8 bits in all 

!  use switches on board 

!  Guess 
"  2 bits each – 8 bits in all 

!  use switches on board 

!  Report 
"  Number of guesses so far 

!  use a hex display (max number of guesses?) 
"  Number of correct colors and correct position 

!  hex display (0-4) 
"  Number of correct colors in incorrect position 

!  hex display (0-4) 
"  Win 

!  hex display or LED 
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Example: 
secret code:  00 01 01 10 
guess:  01 10 01 11 

result: 1 exact, 2 colors-only 



Second steps 

!  Reset 
"  Start with entering a secret code through switches 

!  Need a way to signal a new guess 
"  Switch (same switch as for secret code?) 

!  Register to hold secret code 
"  Increment counter if exact color and position 
"  FSM to step through a comparison 
"  Four comparisons of 2-bits each 

!  Increment other counter if color and wrong position 
"  Also coordinated by control FSM 
"  Multiple scans? 
"  What if two colors are the same in secret code? 
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Color matching 

!  Position 1 compared to each other 
"  If color is the same, increment exact counter 
"  If different, do not increment color-match-only counter 
"  Go through all 4 positions 

!   Match color of secret’s position 1 
"  Compare to other 3 positions 
"  If match, “mark” secret position 1 as matched 
"  If not, then don’t “mark” 
"  Go through all four positions 
"  Count “marks” as the value for the color-match-only counter 

!  How do we “mark” the four values? 
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Basic data path structure 
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Control finite state machine 

!  Wait for secret code entry or guess entry 
"  Load appropriate register 

!  Once guess is entered, sequence through a set of comparisons 
"  For color match in same position – count these 
"  For color match in incorrect position – count these 
"  The hard part is making sure not to double count 

!  How to do this?   
!  What do you need to keep track of? 
!  Need another register (memory) to keep track? 

"  What about a separate state machine for each position? 
!  They could all access the data in parallel (with their own muxes) 

!  Report result of counters to two hex displays (counter values) 
!  Go back to await next guess 
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