
Autumn 2014 CSE390C - II - Combinational Logic 1 

Combinational logic 

!  Switches, basic logic and truth tables, logic functions 
!  Algebraic expressions to gates 
!  Mapping to different gates 
!  Discrete logic gate components (used in labs 1 and 2) 
!  Canonical forms 
!  Regular logic: multiplexers, decoders, LUTs and FPGAs 
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close switch (if A is “1” or asserted) 
and turn on light bulb (Z) 

A Z 

open switch (if A is “0” or unasserted) 
and turn off light bulb (Z) 

Switches: basic element of physical 
implementations 

!  Implementing a simple circuit: 

Z  ≡  A 

A Z 



!  Compose switches into more complex ones (Boolean functions): 
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AND 

OR 

Z =  A and B = A * B = AB 

Z =  A or B = A + B  

A B 

A 

B 

Switches (cont’d) 
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Transistor networks 

!  Modern digital systems are designed in CMOS technology 
"  MOS stands for Metal-Oxide on Semiconductor 
"  C is for complementary because there are both normally-open 

and  
normally-closed switches 

!  MOS transistors act as voltage-controlled switches 
"  similar, though easier to work with than relays.  



Mark Bohr Intel 

0.13µm 

 X       Y 
0V     1.8V 
1.8V   0V 

X Y 

X Y 

1.8V 

0V 

Y X 

1.8V 

0V 

Most digital logic is CMOS 

0V ≡ Logic 0 
1.8V ≡ Logic 1 
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Multi-input logic gates 

!  CMOS logic gates are inverting 
"  Easy to implement NAND, NOR, NOT 

while AND, OR, and Buffer are harder 

X  Y  Z 
0  0  1 
0  1  1 
1  0  1 
1  1  0 

Z 

X 

1.8V 

0V 

Y 

1.8V 

X Y 

X 

Z 

1.8V 

0V 

Y 

1.8V 

X Y 
X 
Y Z 

Claude Shannon – 1938 
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X  Y       16 possible functions (F0–F15) 

0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1 
0  1  0  0  0  0  1  1  1  1  0  0  0  0  1  1  1  1 
1  0  0  0  1  1  0  0  1  1  0  0  1  1  0  0  1  1 
1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 

0 
X and Y 

X Y 

X or Y 

not Y not X 1 

X 
Y F 

X xor Y 
X nor Y 

not (X or Y) 

X = Y X nand Y 
not (X and Y) 

Possible logic functions of two variables 

!  There are 16 possible functions of 2 input variables: 
"  in general, there are 2**(2**n) functions of n inputs 
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(X + Y)’ = X’ • Y’ 
NOR is equivalent to AND  
with inputs complemented 

(X • Y)’ = X’ + Y’ 
NAND is equivalent to OR  
with inputs complemented 

X  Y  X’  Y’  (X + Y)’  X’ • Y’ 
0  0  1  1            
0  1  1  0          
1  0  0  1       
1  1  0  0      

X  Y  X’  Y’  (X • Y)’  X’ + Y’ 
0  0  1  1       
0  1  1  0      
1  0  0  1       
1  1  0  0      

Proving theorems (perfect induction) 

!  Using perfect induction (complete truth table): 
"  e.g., de Morgan’s:  
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X  Y  Z 
0  0  0 
0  1  0 
1  0  0 
1  1  1 

X  Y 
0  1 
1  0 

X  Y  Z 
0  0  0 
0  1  1 
1  0  1 
1  1  1 

X Y 

X 

X 

Y 

Y 

Z 

Z 

From Boolean expressions to logic gates 

!  NOT  X’  X  ~X      X/ 

!  AND  X • Y  XY  X ∧ Y 

!  OR  X + Y   X ∨ Y 
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X 
Y Z 

X  Y  Z 
0  0  1 
0  1  1 
1  0  1 
1  1  0 

X  Y  Z 
0  0  1 
0  1  0 
1  0  0 
1  1  0 

Z 
X 

Y 

X 
Y 

Z 

X  Y  Z 
0  0  1 
0  1  0 
1  0  0 
1  1  1 

X  Y  Z 
0  0  0 
0  1  1 
1  0  1 
1  1  0 

Z 
X 
Y 

X xor Y = X Y’ + X’ Y 
X or Y but not both  

("inequality", "difference") 

X xnor Y = X Y + X’ Y’ 
X and Y are the same  

("equality", "coincidence") 

From Boolean expressions to logic gates 
(cont’d) 

!  NAND 

!  NOR 

!  XOR 
  X ⊕ Y 

!  XNOR 
  X = Y 
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Canonical forms 

!  Truth table is the unique signature of a Boolean function 
!  The same truth table can have many gate realizations 

"  we’ve seen this already 
"  depends on how good we are at Boolean simplification 

!  Canonical forms 
"  standard forms for a Boolean expression 
"  we all come up with the same expression 
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A  B  C  F  F’ 
0  0  0  0  1 
0  0  1  1  0 
0  1  0  0  1 
0  1  1  1  0 
1  0  0  0  1 
1  0  1  1  0 
1  1  0  1  0 
1  1  1  1  0 

F = 

F’ = A’B’C’ + A’BC’ + AB’C’ 

Sum-of-products canonical forms 

!  Also known as disjunctive normal form 
!  Also known as minterm expansion 

F =  001      011      101       110       111 

+ A’BC + AB’C + ABC’ + ABC A’B’C 



Autumn 2014 CSE390C - II - Combinational Logic 13 

A  B  C  F  F’ 
0  0  0  0  1 
0  0  1  1  0 
0  1  0  0  1 
0  1  1  1  0 
1  0  0  0  1 
1  0  1  1  0 
1  1  0  1  0 
1  1  1  1  0 

F =       000              010              100 
F = 

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’) 

Product-of-sums canonical form 

!  Also known as conjunctive normal form 
!  Also known as maxterm expansion 

(A + B + C) (A + B’ + C) (A’ + B + C) 
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Four alternative two-level implementations 
of F = AB + C 

   Transistors 
(NOT = 2) 

Delay (approx) 
(NOT = 1) 

Hazards 

F1 
5 3-input NANDs   
1 5-input NAND 

5*6 + 1*10 = 40 
2 levels 

3^2 + 5^2 = 34 yes 

F2 
2 2-input NANDs 

2*4 = 8 
2 levels 

2^2 + 2^2 = 8 no 

F3 
4 3-input NANDs 

4*6 = 24 
2 levels 

3^2 + 3^2 = 18 yes 

F4 
3 2-input NANDs 

3*4 = 12 
2 levels 

2^2 + 2^2 = 8 no 
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Waveforms for the four alternatives 

!  Waveform: just a sideways truth table 
"  but note how edges don’t line up exactly 
"  it takes time for a gate to switch its output! 

!  Waveforms are essentially identical 
"  except for timing hazards (glitches) 
"  delays almost identical (modeled as a delay per level, not type of 

gate or number of inputs to gate) 



Mapping truth tables to logic gates 

!  Given a truth table: 
1.  Write the Boolean expression 
2.  Minimize the Boolean expression 
3.  Draw as gates 
4.  Map to available gates 

A  B  C    F 
0  0  0    0 
0  0  1    0 
0  1  0    1 
0  1  1    1 
1  0  0    0 
1  0  1    1 
1  1  0    0 
1  1  1    1 

F = A’BC’+A’BC+AB’C+ABC 
   = A’B(C’+C)+AC(B’+B) 
   = A’B+AC 

1 

2 

3 

4 
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Which realization is best? 

!  Reduce number of inputs 
"  fewer literals (input variables) means less transistors -> smaller circuits 
"  fewer inputs implies faster gates -> gates are smaller and thus also faster 
"  fan-ins (# of gate inputs) are limited in some technologies 

!  Reduce number of gates 
"  fewer gates (and the packages they come in) means smaller circuits 

!  Reduce number of levels of gates 
"  fewer level of gates implies reduced signal propagation delays 

!  How do we explore tradeoffs? 
"  automated tools to generate synthesize solutions -> mostly good 
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Random logic gates 

!  Transistors quickly integrated into logic gates (1960s) 
!  Catalog of common gates (1970s) 

"  Texas Instruments Logic Data Book – the yellow “bible” 
"  all common packages listed and characterized (delays, power) 
"  typical packages:  

!  in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates 

!  Today, very few of these parts are still in use 
!  However, parts libraries exist for chip design 

"  designers reuse already characterized logic gates on chips 
"  same reasons as before 
"  difference is that the parts don’t exist in physical inventory – 

created as needed 



Mapping truth tables to logic gates 

!  Given a truth table: 
"  Write the Boolean expression 
"  Minimize the Boolean expression 
"  Draw as gates 
"  Map to available gates 
"  Determine number of packages 

and their connections 
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4 

F C

B A

7 nets (wires)  
in this design 



Breadboarding circuits 
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F 

B A

C

GND 

VCC 

VCC 

GND 

F 
(to 
LED1) 

A 
(from 
SW1  
and 
SW2) 

B 

C 
(from 
SW3) 
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Random logic 

!  Too hard to figure out exactly what gates to use 
"  map from logic to NAND/NOR networks 
"  determine minimum number of packages 

!  slight changes to logic function could decrease cost 

!  Changes too difficult to realize 
"  need to rewire parts 
"  may need new parts 
"  design with spares (few extra inverters and gates on every board) 

!  Need higher levels of integration to keep costs down 
"  cost directly related to number of devices and their pins 
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Regular logic 

!  Need to make design faster 
!  Need to make engineering changes easier to make 
!  Simpler for designers to understand and map to functionality 

"  harder to think in terms of specific gates 
"  easier to think in terms of larger multi-purpose blocks 



Autumn 2014 CSE390C - II - Combinational Logic 23 

multiplexer demultiplexer 4x4 switch 

control control 

Making connections 

!  Direct point-to-point connections using wires 
!  Route one of many inputs to a single output --- multiplexer 
!  Route a single input to one of many outputs --- demultiplexer 
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multiple input sources 

multiple output destinations 

MUX 

A B 

Sum 

Sa 

Ss 

Sb 

B0 

MUX 

DEMUX 

Mux and demux (cont'd) 

!  Uses of multiplexers/demultiplexers in multi-point connections 

B1 A0 A1 

S0 S1 
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two alternative forms 
for a 2:1 Mux truth table 

functional form 

logical form 

A  Z 
0  I0 
1  I1 

I1  I0  A  Z 
0  0  0  0 
0  0  1  0 
0  1  0  1 
0  1  1  0 
1  0  0  0 
1  0  1  1 
1  1  0  1 
1  1  1  1 

Z = A' I0  + A I1 

Multiplexers/selectors 

!  Multiplexers/selectors: general concept 
"  2n data inputs, n control inputs (called "selects"), 1 output 
"  used to connect 2n points to a single point 
"  control signal pattern forms binary index of input connected to 

output 
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2   -1 
I0 
I1 
I2 
I3 
I4 
I5 
I6 
I7 

A  B  C 

8:1 
mux 

Z 

I0 
I1 
I2 
I3 

A  B 

4:1 
mux 

Z I0 
I1 

A 

2:1 
mux Z 

k=0 

n 

Multiplexers/selectors (cont'd) 

!  2:1 mux:  Z = A'I0 + AI1 

!  4:1 mux:  Z = A'B'I0 + A'BI1 + AB'I2 + ABI3 

!  8:1 mux:  Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 + 
         AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7  

!  In general:  Z = Σ      (mkIk) 

"  in minterm shorthand form for a 2n:1 Mux 



Autumn 2014 CSE390C - II - Combinational Logic 27 

Gate level implementation of muxes 

!  2:1 mux 

!  4:1 mux 
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Multiplexers as general-purpose logic 

!  A 2n:1 multiplexer can implement any function of n variables 
"  with the variables used as control inputs and 
"  the data inputs tied to 0 or 1 
"  in essence, a lookup table (LUT), basis of FPGAs 

!  Example: 
"  F(A,B,C) = m0 + m2 + m6 + m7 

               = A'B'C' + A'BC' + ABC' + ABC 

Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 + 
         AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7 

C A B 

0 
1 
2 
3 
4 
5 
6 
7 
S2 

8:1 MUX 

S1 S0 

Z 
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control signals B and C simultaneously choose  
one of I0, I1, I2, I3 and one of I4, I5, I6, I7 

control signal A chooses which of the 
upper or lower mux's output to gate to Z 

alternative 
implementation 

C 

Z 

A  B 

4:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

I4 
I5 

I2 
I3 

I0 
I1 

I6 
I7 

8:1 
mux 

Cascading multiplexers 

!  Large multiplexers can be made by cascading smaller ones 

Z 

I0 
I1 
I2 
I3 

A 

I4 
I5 
I6 
I7 

B  C 

4:1 
mux 

4:1 
mux 

2:1 
mux 

8:1 
mux 
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A  B  C  F 
0  0  0  1 
0  0  1  0 
0  1  0  1 
0  1  1  0 
1  0  0  0 
1  0  1  0 
1  1  0  1 
1  1  1  1 

C' 

C' 

0 

1 A B 

S1 S0 

F 
0 
1 
2 
3 

4:1 MUX 

C' 
C' 
0 
1 

F 

C A B 

0 
1 
2 
3 
4 
5 
6 
7 

1 
0 
1 
0 
0 
0 
1 
1 

S2 

8:1 MUX 

S1 S0 

Multiplexers as general-purpose logic (cont’d) 

!  A 2n-1:1 multiplexer can implement any function of n variables 
"  with n-1 variables used as control inputs and 
"  the data inputs tied to the last variable or its complement 

!  Example: 
"  F(A,B,C) = m0 + m2 + m6 + m7 

               = A'B'C' + A'BC' + ABC' + ABC 
               = A'B'(C') + A'B(C') + AB'(0) + AB(1) 
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1:2 Decoder: 
O0 = G •  S’ 
O1 = G •  S  

    2:4 Decoder:     
O0 = G •  S1’ •  S0’ 
O1 = G •  S1’ •  S0 
O2 = G •  S1  •  S0’ 
O3 = G •  S1  •  S0 

        3:8 Decoder:           
O0 = G •  S2’ •  S1’ • S0’ 
O1 = G •  S2’ •  S1’ • S0 
O2 = G •  S2’ •  S1  • S0’ 
O3 = G •  S2’ •  S1  • S0 
O4 = G •  S2  •  S1’ • S0’ 
O5 = G •  S2  •  S1’ • S0 
O6 = G •  S2  •  S1  • S0’ 
O7 = G •  S2  •  S1  • S0 

Demultiplexers/decoders 

!  Decoders/demultiplexers: general concept 
"  single data input, n control inputs, 2n  outputs 
"  control inputs (called “selects” (S)) represent binary index of 

output to which the input is connected 
"  data input usually called “enable” (G) 
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active-high  
enable 

active-low  
enable 

active-high  
enable 

active-low  
enable 

O0 G 

S 

O1 

O0 \G 

S 

O1 

S1 

O2 

O3 

O0 G 

O1 

S0 S1 

O2 

O3 

O0 \G 

O1 

S0 

Gate level implementation of demultiplexers 

!  1:2 decoders 

!  2:4 decoders 
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demultiplexer generates appropriate 
minterm based on control signals 

(it "decodes" control signals) 

Demultiplexers as general-purpose logic 

!  A n:2n decoder can implement any function of n variables 
"  with the variables used as control inputs 
"  the enable inputs tied to 1 and 
"  the appropriate minterms summed to form the function 

A'B'C' 
A'B'C 
A'BC' 
A'BC 
AB'C' 
AB'C 
ABC' 
ABC 

C A B 

0 
1 
2 
3 
4 
5 
6 
7 

S2 

3:8 DEC 

S1 S0 

“1” 
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F1 

F2 

F3 

Demultiplexers as general-purpose logic (cont’d) 

!  F1 = A'BC'D + A'B'CD + ABCD 
!  F2 = ABC'D' + ABC 
!  F3 = (A' + B' + C' + D') 

A B 

0  A'B'C'D' 
1  A'B'C'D 
2  A'B'CD' 
3  A'B'CD 
4  A'BC'D' 
5  A'BC'D 
6  A'BCD' 
7  A'BCD 
8  AB'C'D' 
9  AB'C'D 
10  AB'CD' 
11  AB'CD 
12  ABC'D' 
13  ABC'D 
14  ABCD' 
15  ABCD 

4:16 
DEC Enable 

C D 
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0  A'B'C'D'E' 
1 
2 
3 
4 
5 
6 
7 S2 

3:8 DEC 

S1 S0 

A B 

0 
1 
2 
3 S1 

2:4 DEC 

S0 

F 

0 
1 
2  A'BC'DE' 
3 
4 
5 
6 
7 S2 

3:8 DEC 

S1 S0 

E C D 

0  AB'C'D'E' 
1 
2 
3 
4 
5 
6 
7  AB'CDE 

Cascading decoders 

!  5:32 decoder 
"  1x2:4 decoder 
"  4x3:8 decoders 

3:8 DEC 

0 
1 
2 
3 
4 
5 
6 
7  ABCDE 

E C D 

S2 S1 S0 S2 

3:8 DEC 

S1 S0 


