
Autumn 2014 CSE390C - II - Combinational Logic 1

Combinational logic

!  Switches, basic logic and truth tables, logic functions
!  Algebraic expressions to gates
!  Mapping to different gates
!  Discrete logic gate components (used in labs 1 and 2)
!  Canonical forms
!  Regular logic: multiplexers, decoders, LUTs and FPGAs

Autumn 2014 CSE390C - II - Combinational Logic 2

close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Switches: basic element of physical
implementations

!  Implementing a simple circuit:

Z ≡ A

A Z

!  Compose switches into more complex ones (Boolean functions):

Autumn 2014 CSE390C - II - Combinational Logic 3

AND

OR

Z = A and B = A * B = AB

Z = A or B = A + B

A B

A

B

Switches (cont’d)

Autumn 2014 CSE390C - II - Combinational Logic 4

Transistor networks

!  Modern digital systems are designed in CMOS technology
"  MOS stands for Metal-Oxide on Semiconductor
"  C is for complementary because there are both normally-open

and
normally-closed switches

!  MOS transistors act as voltage-controlled switches
"  similar, though easier to work with than relays.

Mark Bohr Intel

0.13µm

 X Y
0V 1.8V
1.8V 0V

X Y

X Y

1.8V

0V

Y X

1.8V

0V

Most digital logic is CMOS

0V ≡ Logic 0
1.8V ≡ Logic 1

Autumn 2014 CSE390C - II - Combinational Logic 5

Multi-input logic gates

!  CMOS logic gates are inverting
"  Easy to implement NAND, NOR, NOT

while AND, OR, and Buffer are harder

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

Z

X

1.8V

0V

Y

1.8V

X Y

X

Z

1.8V

0V

Y

1.8V

X Y
X
Y Z

Claude Shannon – 1938

Autumn 2014 CSE390C - II - Combinational Logic 6

Autumn 2014 CSE390C - II - Combinational Logic 7

X Y 16 possible functions (F0–F15)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X 1

X
Y F

X xor Y
X nor Y

not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two variables

!  There are 16 possible functions of 2 input variables:
"  in general, there are 2**(2**n) functions of n inputs

Autumn 2014 CSE390C - II - Combinational Logic 8

(X + Y)’ = X’ • Y’
NOR is equivalent to AND
with inputs complemented

(X • Y)’ = X’ + Y’
NAND is equivalent to OR
with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)

!  Using perfect induction (complete truth table):
"  e.g., de Morgan’s:

Autumn 2014 CSE390C - II - Combinational Logic 9

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates

!  NOT X’ X ~X X/

!  AND X • Y XY X ∧ Y

!  OR X + Y X ∨ Y

Autumn 2014 CSE390C - II - Combinational Logic 10

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

From Boolean expressions to logic gates
(cont’d)

!  NAND

!  NOR

!  XOR
 X ⊕ Y

!  XNOR
 X = Y

Autumn 2014 CSE390C - II - Combinational Logic 11

Canonical forms

!  Truth table is the unique signature of a Boolean function
!  The same truth table can have many gate realizations

"  we’ve seen this already
"  depends on how good we are at Boolean simplification

!  Canonical forms
"  standard forms for a Boolean expression
"  we all come up with the same expression

Autumn 2014 CSE390C - II - Combinational Logic 12

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

Sum-of-products canonical forms

!  Also known as disjunctive normal form
!  Also known as minterm expansion

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABC A’B’C

Autumn 2014 CSE390C - II - Combinational Logic 13

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100
F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form

!  Also known as conjunctive normal form
!  Also known as maxterm expansion

(A + B + C) (A + B’ + C) (A’ + B + C)

Autumn 2014 CSE390C - II - Combinational Logic 14

Four alternative two-level implementations
of F = AB + C

 Transistors
(NOT = 2)

Delay (approx)
(NOT = 1)

Hazards

F1
5 3-input NANDs
1 5-input NAND

5*6 + 1*10 = 40
2 levels

3^2 + 5^2 = 34 yes

F2
2 2-input NANDs

2*4 = 8
2 levels

2^2 + 2^2 = 8 no

F3
4 3-input NANDs

4*6 = 24
2 levels

3^2 + 3^2 = 18 yes

F4
3 2-input NANDs

3*4 = 12
2 levels

2^2 + 2^2 = 8 no

Autumn 2014 CSE390C - II - Combinational Logic 15

Waveforms for the four alternatives

!  Waveform: just a sideways truth table
"  but note how edges don’t line up exactly
"  it takes time for a gate to switch its output!

!  Waveforms are essentially identical
"  except for timing hazards (glitches)
"  delays almost identical (modeled as a delay per level, not type of

gate or number of inputs to gate)

Mapping truth tables to logic gates

!  Given a truth table:
1.  Write the Boolean expression
2.  Minimize the Boolean expression
3.  Draw as gates
4.  Map to available gates

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

F = A’BC’+A’BC+AB’C+ABC
 = A’B(C’+C)+AC(B’+B)
 = A’B+AC

1

2

3

4

Autumn 2014 16 CSE390C - II - Combinational Logic

Autumn 2014 CSE390C - II - Combinational Logic 17

Which realization is best?

!  Reduce number of inputs
"  fewer literals (input variables) means less transistors -> smaller circuits
"  fewer inputs implies faster gates -> gates are smaller and thus also faster
"  fan-ins (# of gate inputs) are limited in some technologies

!  Reduce number of gates
"  fewer gates (and the packages they come in) means smaller circuits

!  Reduce number of levels of gates
"  fewer level of gates implies reduced signal propagation delays

!  How do we explore tradeoffs?
"  automated tools to generate synthesize solutions -> mostly good

Autumn 2014 CSE390C - II - Combinational Logic 18

Random logic gates

!  Transistors quickly integrated into logic gates (1960s)
!  Catalog of common gates (1970s)

"  Texas Instruments Logic Data Book – the yellow “bible”
"  all common packages listed and characterized (delays, power)
"  typical packages:

!  in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

!  Today, very few of these parts are still in use
!  However, parts libraries exist for chip design

"  designers reuse already characterized logic gates on chips
"  same reasons as before
"  difference is that the parts don’t exist in physical inventory –

created as needed

Mapping truth tables to logic gates

!  Given a truth table:
"  Write the Boolean expression
"  Minimize the Boolean expression
"  Draw as gates
"  Map to available gates
"  Determine number of packages

and their connections

Autumn 2014 CSE390C - II - Combinational Logic 19

4

F C

B A

7 nets (wires)
in this design

Breadboarding circuits

Autumn 2014 CSE390C - II - Combinational Logic 20

F

B A

C

GND

VCC

VCC

GND

F
(to
LED1)

A
(from
SW1
and
SW2)

B

C
(from
SW3)

Autumn 2014 CSE390C - II - Combinational Logic 21

Random logic

!  Too hard to figure out exactly what gates to use
"  map from logic to NAND/NOR networks
"  determine minimum number of packages

!  slight changes to logic function could decrease cost

!  Changes too difficult to realize
"  need to rewire parts
"  may need new parts
"  design with spares (few extra inverters and gates on every board)

!  Need higher levels of integration to keep costs down
"  cost directly related to number of devices and their pins

Autumn 2014 CSE390C - II - Combinational Logic 22

Regular logic

!  Need to make design faster
!  Need to make engineering changes easier to make
!  Simpler for designers to understand and map to functionality

"  harder to think in terms of specific gates
"  easier to think in terms of larger multi-purpose blocks

Autumn 2014 CSE390C - II - Combinational Logic 23

multiplexer demultiplexer 4x4 switch

control control

Making connections

!  Direct point-to-point connections using wires
!  Route one of many inputs to a single output --- multiplexer
!  Route a single input to one of many outputs --- demultiplexer

Autumn 2014 CSE390C - II - Combinational Logic 24

multiple input sources

multiple output destinations

MUX

A B

Sum

Sa

Ss

Sb

B0

MUX

DEMUX

Mux and demux (cont'd)

!  Uses of multiplexers/demultiplexers in multi-point connections

B1 A0 A1

S0 S1

Autumn 2014 CSE390C - II - Combinational Logic 25

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

A Z
0 I0
1 I1

I1 I0 A Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = A' I0 + A I1

Multiplexers/selectors

!  Multiplexers/selectors: general concept
"  2n data inputs, n control inputs (called "selects"), 1 output
"  used to connect 2n points to a single point
"  control signal pattern forms binary index of input connected to

output

Autumn 2014 CSE390C - II - Combinational Logic 26

2 -1
I0
I1
I2
I3
I4
I5
I6
I7

A B C

8:1
mux

Z

I0
I1
I2
I3

A B

4:1
mux

Z I0
I1

A

2:1
mux Z

k=0

n

Multiplexers/selectors (cont'd)

!  2:1 mux: Z = A'I0 + AI1

!  4:1 mux: Z = A'B'I0 + A'BI1 + AB'I2 + ABI3

!  8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
 AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

!  In general: Z = Σ (mkIk)

"  in minterm shorthand form for a 2n:1 Mux

Autumn 2014 CSE390C - II - Combinational Logic 27

Gate level implementation of muxes

!  2:1 mux

!  4:1 mux

Autumn 2014 CSE390C - II - Combinational Logic 28

Multiplexers as general-purpose logic

!  A 2n:1 multiplexer can implement any function of n variables
"  with the variables used as control inputs and
"  the data inputs tied to 0 or 1
"  in essence, a lookup table (LUT), basis of FPGAs

!  Example:
"  F(A,B,C) = m0 + m2 + m6 + m7

 = A'B'C' + A'BC' + ABC' + ABC

Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
 AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

C A B

0
1
2
3
4
5
6
7
S2

8:1 MUX

S1 S0

Z

Autumn 2014 CSE390C - II - Combinational Logic 29

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading multiplexers

!  Large multiplexers can be made by cascading smaller ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

Autumn 2014 CSE390C - II - Combinational Logic 30

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

C A B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as general-purpose logic (cont’d)

!  A 2n-1:1 multiplexer can implement any function of n variables
"  with n-1 variables used as control inputs and
"  the data inputs tied to the last variable or its complement

!  Example:
"  F(A,B,C) = m0 + m2 + m6 + m7

 = A'B'C' + A'BC' + ABC' + ABC
 = A'B'(C') + A'B(C') + AB'(0) + AB(1)

Autumn 2014 CSE390C - II - Combinational Logic 31

1:2 Decoder:
O0 = G • S’
O1 = G • S

 2:4 Decoder:
O0 = G • S1’ • S0’
O1 = G • S1’ • S0
O2 = G • S1 • S0’
O3 = G • S1 • S0

 3:8 Decoder:
O0 = G • S2’ • S1’ • S0’
O1 = G • S2’ • S1’ • S0
O2 = G • S2’ • S1 • S0’
O3 = G • S2’ • S1 • S0
O4 = G • S2 • S1’ • S0’
O5 = G • S2 • S1’ • S0
O6 = G • S2 • S1 • S0’
O7 = G • S2 • S1 • S0

Demultiplexers/decoders

!  Decoders/demultiplexers: general concept
"  single data input, n control inputs, 2n outputs
"  control inputs (called “selects” (S)) represent binary index of

output to which the input is connected
"  data input usually called “enable” (G)

Autumn 2014 CSE390C - II - Combinational Logic 32

active-high
enable

active-low
enable

active-high
enable

active-low
enable

O0 G

S

O1

O0 \G

S

O1

S1

O2

O3

O0 G

O1

S0 S1

O2

O3

O0 \G

O1

S0

Gate level implementation of demultiplexers

!  1:2 decoders

!  2:4 decoders

Autumn 2014 CSE390C - II - Combinational Logic 33

demultiplexer generates appropriate
minterm based on control signals

(it "decodes" control signals)

Demultiplexers as general-purpose logic

!  A n:2n decoder can implement any function of n variables
"  with the variables used as control inputs
"  the enable inputs tied to 1 and
"  the appropriate minterms summed to form the function

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

C A B

0
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

“1”

Autumn 2014 CSE390C - II - Combinational Logic 34

F1

F2

F3

Demultiplexers as general-purpose logic (cont’d)

!  F1 = A'BC'D + A'B'CD + ABCD
!  F2 = ABC'D' + ABC
!  F3 = (A' + B' + C' + D')

A B

0 A'B'C'D'
1 A'B'C'D
2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'
9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'
13 ABC'D
14 ABCD'
15 ABCD

4:16
DEC Enable

C D

Autumn 2014 CSE390C - II - Combinational Logic 35

0 A'B'C'D'E'
1
2
3
4
5
6
7 S2

3:8 DEC

S1 S0

A B

0
1
2
3 S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7 S2

3:8 DEC

S1 S0

E C D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

Cascading decoders

!  5:32 decoder
"  1x2:4 decoder
"  4x3:8 decoders

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE

E C D

S2 S1 S0 S2

3:8 DEC

S1 S0

