
CSE 390B: Building Academic Success Through Bottom-Up Computing Winter 2022

Midterm Examination February 10th, 2022, at 1:30pm

Name:

UW NetID:

Instructions for those taking the exam in person:
● Make sure you have included your name on the exam (first & last) & your student ID #.
● When you are finished with the exam, turn in your exam to the course staff.

Instructions for students taking the exam virtually:
● You will be writing your exam answers on a blank sheet of paper.
● Make sure to include your name (first & last), your student ID # as well as for each exam

question, clearly indicate the exam question number and your answer on your paper.
● Please have your zoom video on and audio muted during the exam.
● When you are finished with the exam, take a picture of your answers and upload it to

Gradescope.

General Instructions:
● You will have 50 minutes to complete the exam.
● Questions are not necessarily in order of difficulty.
● This exam is closed-note, closed-book (except for the given reference sheet).
● There are 100 points distributed unevenly among 5 questions (most with multiple parts).

Advice:
● Read each question carefully. Understand a question before you start writing.
● Write down thoughts and intermediate steps so you can get partial credit. But clearly

indicate what is your final answer.
● The questions are not necessarily in order of difficulty. Skip around. Make sure you get

to all the questions.
● If you have questions, please raise your hand and the course staff will get to you shortly.
● Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 25 10 20 20 25 100

https://www.gradescope.com/courses/342628

1. (25 points) In this problem, you will build Boolean circuits with three inputs and two
outputs. You may only use two-input And and Or gates and single-input Not gates.

A prime number is a whole number that’s greater than one with only two factors (the
number 1 and the factor itself). A number is composite if the number is a whole number
greater than one and not a prime number. The first few prime numbers are 2, 3, 5, 7, 11,
and so on.

Design a circuit called NumberTypes that has three inputs (a, b, and c) and two outputs
(isPrime and isComposite). The input bits represent the number to check the type for,
where a is the most significant bit of the number and c is the least significant bit of the
number. The output isPrime has an output of 1 when the number represented by the
three input bits is a prime number and 0 otherwise. The output isComposite has an
output of 1 when the number represented by the three input bits is a composite number
and 0 otherwise.

a. Write a truth table for the circuit. The circuit should have three inputs and two
outputs. You can call the three inputs a, b, and c and the outputs isPrime for if the
number is prime and isComposite if the number is composite.

b. Based on the truth table you filled out, write a boolean expression for the output
isComposite.

c. Implement the boolean expression you came up with from part b for the
isComposite output only by completing the following HDL template or drawing a
circuit diagram using the standard symbols. You do not need to do both.

CHIP NumberType {
// a is the MSB and c is the LSB
IN a, b, c;

// isPrime is 1 if input is a prime number
// isComposite is 1 if input is a composite number
OUT isPrime, isComposite;

PARTS:
// Your code or circuit diagram here:

}

d. In less than a paragraph, describe at a high level how you would implement the
output logic for isPrime using the logic that you implemented for isComposite
from part b. (Hint: A Mux gate will be helpful here.)

2. (10 points) In this problem, you may only use only And, Or, and Not gates. Your And and
Or gates can take any number of inputs. For the problems below, briefly describe which
gates you would use and how they contribute to the desired output.

a. In less than a paragraph, explain at a high level how you would build a circuit that
takes a two's complement 16-bit number that outputs 1 if the input is the
maximum possible two’s complement value or the minimum possible two’s
complement value.

b. In less than a paragraph, explain at a high level how you would build a circuit that
takes an unsigned 16-bit number as its input and outputs 1 if the input number is
even.

3. (20 points) In this problem, you may only use two-input muxes, DFFs, and combinational
logic gates.

Draw the following circuit specification using conventional notation, omitting implicit clock
signals.

● The circuit takes three data inputs (i1, i2, and i3)
● The circuit has three outputs (o1, o2, and o3)
● Each output at time t + 1 is defined as follows:

o o1(t + 1) = i1(t) & i3(t)

o if (o3(t)): o2(t + 1) = i3(t)
else: o2(t + 1) = o1(t)

o if (o1(t) != o3(t)): o3(t + 1) = i2(t) | i3(t)
else: o3(t + 1) = o3(t)

4. (20 points) Below is a sample program written in high-level pseudocode:

if (R0 > 2 || R1 == -1) {
R2 = 0

} else if (R0 == 0) {
R2 = R0 & R1

} else {
R2 = R1 - 5

}

Write an equivalent Hack assembly program using the virtual registers R0, R1, and R2.
R0, R1, and R2 correspond to the values in memory at addresses 0, 1, and 2,
respectively.

5. (25 points) Below is a Hack assembly program with a single bug. R0, R1, and R2
correspond to the values in memory at addresses 0, 1, and 2, respectively.

01. (START)
02. @R0
03. M = 0
04. @R2
05. M = 3
06. (LOOP)
07. @R2
08. D = M
09. @8
10. D = D - A
11. @END
12. D; JGT
13. @R2
14. A = M;
15. // PART I
16. D = M;
17. @R1
18. D = M - D
19. @CONTAINS
20. D; JEQ
21. @R2
22. M = M + 1
23. // PART II
24. @LOOP
25. 0; JMP
26. (CONTAINS)
27. @R0
28. M = 1
29. @END
30. 0; JMP
31. (END)
32. @END
33. 0; JMP

Here is the state of memory before the Hack Assembly
code to the left runs (we will use this to answer later parts
of this problem):

Address Value

0 39

1 3

2 17

3 5

4 -9

5 25

6 2

7 5

8 -2

9 29

10 37

11 3

12 -7

13 1

14 18

15 -31

a. Trace through the code starting with the state of memory given in the table.
Indicate the value of the registers M, A, and D, at each of the following locations
commented “PART #” the first time you reach that location when executing the
code.

i. Values of M, A, and D when first reaching comment with “PART I”

M =

A =

D =

ii. Values of M, A, and D when first reaching comment with “PART II”

M =

A =

D =

b. Starting with the state of memory given in the table, what are the values stored at
address 0, address 1, and address 2 in memory after the Hack Assembly code
runs to completion, (enters the END infinite loop)?

Value at address 0 =

Value at address 1 =

Value at address 2 =

c. The Hack Assembly code should check if the values stored in memory from
addresses R3 to R7, inclusive, contain the value stored at address R1. If so, the
value stored at address R0 should be 1. Otherwise, the value stored at address
R0 should be 0. The return statement on line 5 immediately terminates the
program. The program attempts to be equivalent to the following pseudocode:

1. ram[0] = 0
2. for (i = 3; i < 8; i++) {
3. if (ram[1] == ram[i]) {
4. ram[0] = 1
5. return
6. }
7. }

The Hack Assembly program has a single bug. The program can set ram[0] to 1
even when the value specified in ram[1] doesn’t exist between the values stored
from R3 to R7, inclusive. Provide the memory address and value that would
cause the program to incorrectly set ram[0] to 1.

i. Memory address:

ii. Value at memory address:

d. The bug in the Hack Assembly code can be fixed by changing a single line.
Provide the line # for the line of code that you would change and the change that
you would make to fix the program.

i. Line # that should be fixed:

ii. New line of code:

e. In one sentence, what is the purpose of the value at address R2 in this problem?

