
Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CSE 390B, 2024 Spring
Building Academic Success Through Bottom-Up Computing

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Building a Computer &
Hack CPU Logic

Building a Computer, Hack CPU Interface, Project 6 Overview

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Lecture Outline

❖ Building a Computer
§ Architecture, Fetch and Execute Cycle

❖ Hack CPU Interface
§ Implementation and Operations

❖ Project 6 Overview
§ Mock Exam Problem and Project Tips

2

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Building a Computer

❖ All your hardware efforts are about to pay off!

❖ Perspective: BUILDING A COMPUTER

❖ In Project 6, you will build Computer.hdl, the final,
top-level chip in this course
§ For all intents and purposes, a real computer
§ Simplified, but organization very similar to your laptop

❖ Project 7 onward, we will write software to make it useful

3

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Von Neumann Architecture

4

COMPUTER

MEMORY

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Connecting the Computer: Buses

5

COMPUTER

MEMORY

INPUT

CPU

OUTPUT

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

Address Bus

Data Bus

CONTROL

REGISTERS

Control Bus

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Basic CPU Loop

❖ Repeat forever:
§ Fetch an instruction from the program memory
§ Execute that instruction

6

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Fetching

❖ Specify which instruction to read as the address input to
our memory

❖ Data output: actual bits of the instruction

7

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

PC 1

MEMORY

Memory Input:
Address

Memory Output:
Data Instruction

D=A;JMP

Instruction Address

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Executing

❖ The instruction bits describe exactly “what to do”
§ A-instruction or C-instruction?
§ Which operation for the ALU?
§ What memory address to read? To write?
§ If I should jump after this instruction, and where?

❖ Executing the instruction involves data of some kind
§ Accessing registers
§ Accessing memory

8

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Combining Fetch & Execute

9

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2 PC 1

MEMORY

Memory Input:
Address

Memory Output:
Data Instruction

D=A;JMP

Instruction Address

Data Address (From instruction or register)

Data
245

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Combining Fetch & Execute

10

❖ Could we implement with RAM16K.hdl?
§ (Hint: Think about the I/O of RAM)

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2 PC 1

MEMORY

Memory Input:
Address

Memory Output:
Data Instruction

D=A;JMP

Instruction Address

Data Address (From instruction or register)

Data
245

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

❖ Could we implement with RAM16K.hdl?
§ No! Our memory chips only have one input and one output

Combining Fetch & Execute

11

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2 PC 1

MEMORY

Memory Input:
Address

Memory Output:
Data Instruction

D=A;JMP

Instruction Address

Data Address (From instruction or register)

Data
245

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

❖ Can use multiplexing to share a single input or output

Solution 1: Handling Single Input / Output

12

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

MEMORY

Memory Input:
Address

Memory
Output: Data

Instruction,
when fetching

Data, when
executing

Instruction Address

Fetching vs. Executing

Data Address
Mux

DMux

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

❖ Need to store fetched instruction so it’s available during
execution phase

Solution 1: Fetching / Executing Separately

13

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

MEMORY

Memory Input:
Address

Memory
Output: Data

Instruction,
when fetching

Data, when
executing

Instruction Address

Fetching vs. Executing

Fetching vs. Executing

Data Address
Mux

DMux
Register

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Solution 2: Separate Memory Units

❖ Separate instruction memory and data memory into two
different chips
§ Each can be independently addressed, read from, written to

❖ Pros:
§ Simpler to implement

❖ Cons:
§ Fixed size of each partition, rather than flexible storage
§ Two chips → redundant circuitry

14

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Lecture Outline

❖ Building a Computer
§ Architecture, Fetch and Execute Cycle

❖ Hack CPU Interface
§ Implementation and Operations

❖ Project 6 Overview
§ Mock Exam Problem and Project Tips

15

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack CPU

16

COMPUTER

ROM
(Instructions)

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

0
1
2

RAM
(Data)

100110010111
100011001111
000000000010
...

Data

0
1
2

addr of
next

instruction

data
out

data
in

instr

010111001110
101100010101
111000101111
...

Instructions

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack CPU Interface Inputs

❖ inM: Value coming from
memory

❖ instruction: 16-bit
instruction

❖ reset: if 1, reset the
program

17

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack CPU Interface Outputs

❖ outM: value used to update
memory if writeM is 1

❖ writeM: if 1, update value in
memory at addressM with
outM

❖ addressM: address to read
from or write to in memory

❖ pc: address of next instruction
to be fetched from memory

18

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack CPU Implementation

19

pc

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack CPU Implementation

20

(each "C" symbol represents a control bit)

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Instruction Handling

21

(each "C" symbol represents a control bit)

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Instruction Handling

22

0000000000000101

A-instruction

@5

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Instruction Handling

23

0000000000000101

A-instruction

@5

CPU handling of an A-instruction:
v Decodes the instruction into:

§ op-code
§ 15-bit value

v Stores the value in the A-register
v Outputs the value (not shown in this diagram)

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Instruction Handling

24

C-instruction

D=D+1;JMP 1110011111010111

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

25

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Jump:
Condition for
jumping

Dest:
Where to store
result

Comp:
ALU Operation (a bit chooses
between A and M)

UnusedFamily:
C-Instruction

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Instruction Handling

26

C-instruction

D=D+1;JMP 1110011111010111

CPU handling of a C-instruction:
v Decodes the instruction bits into:

§ Op-code
§ ALU control bits
§ Destination load bits
§ Jump bits

v Routes these bits to their chip-part destinations
v The chip-parts (most notably, the ALU) execute the instruction

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

27

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Comp:
ALU Operation (a bit chooses
between A and M)

Chapter 4 Important: just pattern
matching text!
Cannot have “1+M”

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Handling C-Instructions

28

1110011111010111

011111

writeM

1…01

1…10

ALU data inputs:
v Input 1: from the D-register
v Input 2: from either:

§ A-register, or
§ data memory

ALU control inputs:
v Control bits (from the instruction)

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

29

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Dest:
Where to store
result

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Handling C-Instructions

30

1110011111010111

writeM

1…01

1…10

0…11

0
1

0

ALU data output:
v Result of ALU calculation
v Fed simultaneously to: D-register, A-register, data memory

v Which destination actually commits to the ALU output is
determined by the instruction’s destination bits

011111

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Handling C-Instructions

31

ALU control outputs:
v Is the output negative?
v Is the output zero?

1110011111010111

writeM

1…01

0…11

1…10

011111

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Control

32

pc

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Control

33

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Control

34

PC operation (abstraction)
Outputs the address of the next instruction:
v Restart: PC = 0

v No jump: PC++
v Go to: PC = A

v Conditional go to: if (condition) PC = A
else PC ++

load

16

1

16

pc

Address of next
instruction

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

❖ Symbolic:

❖ Binary:

Hack: C-Instructions

35

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Jump:
Condition for
jumping

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

CPU Operation: Control

36

load

16

1

16

Address of next
instruction

pc

PC operation (implementation)
if (reset==1) PC = 0
else

// In the course of handling the current instruction:
load = f (jump bits, ALU control outputs)
if (load == 1) PC = A // jump
else PC++ // next instruction

111 a c c c c c c d d d j j j

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Hack CPU Implementation: That’s It!

37

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Lecture Outline

❖ Building a Computer
§ Architecture, Fetch and Execute Cycle

❖ Hack CPU Interface
§ Implementation and Operations

❖ Project 6 Overview
§ Mock Exam Problem and Project Tips

38

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Project 6: Overview

❖ Part I: Mock Exam Problem

❖ Part II: Building a Computer
§ LoadAReg.hdl, LoadDReg.hdl (Easier)
§ JumpLogic.hdl (Medium)
§ CPU.hdl (Harder)
§ Computer.hdl (Easier)

❖ Part III: Project 6 Reflection

39

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Project 6, Part I: Mock Exam Problem

❖ Your group will meet for a 30-minute session to do one
mock exam problem
§ Your group’s mock exam problem will be emailed right before

your session

❖ Your 30-minute session will include:
§ Set up: 5 minutes
§ Mock Exam Problem: 10 minutes
§ Debrief & Reflection: 15 minutes

❖ Part I task: Submit the completed mock exam problem
and complete the reflection questions

40

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Project 6, Part II Tips

❖ CPU.hdl: We provide an overview diagram, but there
are details to fill in, especially control
§ Draw your own detailed diagram first
§ Handling jumps will require a lot of logic—sketch out the cases
§ Textbook chapter 4 and 5 helpful for Project 6

❖ Multi-Bit Buses: MSB to the left, LSB to the right
§ Important to keep in mind when taking apart the instruction

❖ Debugging: Consult .out and .cmp files to debug, then
look at internal wires in simulator
§ See also the “Debugging tips” section of the specification

41

Lecture 10: Building a Computer & Hack CPU Logic CSE 390B, 2024 Spring

Lecture 10 Reminders

❖ Project 5: Annotation, Machine Language, Computer
Memory due tonight (4/26) at 11:59pm

❖ CSE 390B midterm next Friday (5/3) during lecture

❖ Project 6 (Mock Exam Problem & Building a Computer)
released today, due in two Fridays (5/10) at 11:59pm

❖ Eric has office hours after class in CSE2 153
§ Feel free to post your questions on the Ed board as well

42

