
CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

CSE 390B, Winter 2022
Building Academic Success Through Bottom-Up Computing

Midterm Debrief,
Compilers

Midterm Debrief, Revisiting Time Management,
Introduction to the Compiler, Project 6 Overview

If joining virtually, please have your camera turned on if you can!

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Lecture Outline

❖ Midterm Debrief

❖ Introduction to the Compiler
▪ Overview, Scanner, Parser

❖ Project 6 Overview
▪ Midterm Corrections, Professor Meeting Report

2

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Midterm Debrief

❖ You all put great effort into the exam!

❖ Challenging midterm for the 50 minutes you were allotted

❖ Key Takeaways:
§ Excellent job on the Hack Assembly and circuit design problems!
§ Importance of taking the time to read the problem carefully
§ Time management: Prioritizing problems you feel most confident in

3

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Midterm Next Steps

❖ If you think a problem was graded unfairly or wrong,
submit a regrade request in Gradescope!
▪ Don’t be afraid to do so; this is a great learning opportunity for

both you and the course staff

❖ You will have a chance to get points back with midterm
corrections as part of Project 6

4

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Lecture Outline

❖ Midterm Debrief

❖ Introduction to the Compiler
▪ Overview, Scanner, Parser

❖ Project 6 Overview
▪ Midterm Corrections, Professor Meeting Report

5

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Roadmap

6

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Focus for the rest of
the course

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly
Language

Machine Code

Windows
Mac

Unix/Linux
Android
Hack OS

Operating
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level
Language

Intermediate
Language(s)

Compiler

Compiler

(VM Translator)

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly
Language

Machine Code

Windows
Mac

Unix/Linux
Android
Hack OS

Operating
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level
Language

Intermediate
Language(s)

Compiler

Compiler

(VM Translator)
(Project 7)

Compiler

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Compiler: Goal

9

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Compiler: Goal

10

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler

Theory Definition: a string, from the set
of strings making up a language

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Compiler: Goal

11

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler

Theory Definition: a string, from the set
of strings making up a language

Practical Definition: a file containing a
bunch of characters

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Compiler: Implementation

12

Scanner Parser Type
Checker Optimizer Code

Generator

Break string into
discrete tokens:

etc.

IF (

==

ID(n)

NUM(0)

Verify the
syntax tree is
semantically
correct

Rearrange the
code to be
more efficient

Convert the syntax
tree to the target
language

Arrange tokens into
syntax tree:

+

x 10

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Lecture Outline

❖ Midterm Debrief

❖ Introduction to the Compiler
▪ Overview, Scanner, Parser

❖ Project 6 Overview
▪ Midterm Corrections, Professor Meeting Report

13

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Aside: The Jack Language

14

function void main() {
var int a, bar;
let bar = 10;

}

method int f(int a) {
return 2;

}

Jack

static void main() {
int a, bar;
bar = 10;

}

int f(int a) {
return 2;

}

Java

≈

❖ The High-Level Language we will use to program your
Hack computer

❖ Very similar to Java: mostly just a different set of
keywords sprinkled around
▪ Makes compiling easier

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner

15

Scanner

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

❖ Reads a giant string, breaks down into tokens
▪ Each token has a type: what role does this token play?

• E.g., is a type representing an occurrence of “{“
▪ What types do we care about? The “building blocks” of our

programming language:
• Keywords (e.g.,)
• Operators (e.g.,)
• Punctuation (e.g.,)

The Scanner

16

Scanner

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

FUNCTION

EQUALS

SEMICOLON COMMA

LCURLY

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

❖ In addition to a type, some tokens carry a value:
▪ Identifiers (e.g.,)
▪ Numbers (e.g.,)

❖ Scanner should present a clean token stream
▪ No whitespace or comments: the rest of the compiler only wants

to consider things that change program meaning

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

The Scanner

17

Scanner

ID(a)

NUM(10)

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

18

❖ What if we split the input program on whitespace, and
match each segment to a token type? (E.g., “{“ → LCURLY)

The Scanner

Scanner

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

19

❖ What if we split the input program on whitespace, and
match each segment to a token type? (E.g., “{“ → LCURLY)

❖ Tempting, but we would end up with “a,” “bar;” “bar=10;”
▪ Whitespace is tricky: generally, we want to ignore it, but we can’t

count on it being there

The Scanner

Scanner

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

20

; let bar=10;
Jack

Token Stream

curr

Accumulated: ;

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

21

; let bar=10;
Jack

Token Stream

curr

Accumulated:

SEMICOLON

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

22

; let bar=10;
Jack

Token Stream

curr

Accumulated: l

SEMICOLON

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

23

; let bar=10;
Jack

Token Stream

curr

Accumulated: le

SEMICOLON

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

24

; let bar=10;
Jack

Token Stream

curr

Accumulated: let

SEMICOLON

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

25

; let bar=10;
Jack

Token Stream

curr

Accumulated:

SEMICOLON LET

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

26

; let bar=10;
Jack

Token Stream

curr

Accumulated: b

SEMICOLON LET

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

27

; let bar=10;
Jack

Token Stream

curr

Accumulated: ba

SEMICOLON LET

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

28

; let bar=10;
Jack

Token Stream

curr

Accumulated: bar

SEMICOLON LET

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

29

; let bar=10;
Jack

Token Stream

curr

Accumulated: =

SEMICOLON LET ID(bar)

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: How?

30

; let bar=10;
Jack

Token Stream

curr

Accumulated: 1

SEMICOLON LET ID(bar)

EQUALS

❖ Observation: many tokens have disjointed starting characters
❖ Keep cursor on current char

▪ If the char could be part of this token, accumulate it
▪ If not, complete the current token

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ Simple: when token is done, check against list of keywords

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Scanner: Why?

❖ Fundamentally: The compiler can’t reason about a
massive string, so we need to boil it down to its meaning
first
▪ A great place to start is grouping characters that form a “word”

❖ Engineering-wise: Separation of concerns
▪ A stream of tokens is an important abstraction for many file-

processing tasks, not just compiling
▪ Cleaning away whitespace and comments makes rest of compiler

simpler

31

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Lecture Outline

❖ Midterm Debrief

❖ Introduction to the Compiler
▪ Overview, Scanner, Parser

❖ Project 6 Overview
▪ Midterm Corrections, Professor Meeting Report

32

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Parser

❖ Takes in the flat token stream and outputs a structured
tree representation of program constructs

❖ Result: an Abstract Syntax Tree
▪ Captures the structural features of the program
▪ Important distinction: cares about big-picture syntax (E.g., entire
if statement) rather than nitty-gritty syntax (E.g., semicolons,
parentheses, even word “if” used to write that if statement) 33

Token Stream

IF

Abstract Syntax Tree

IF

ASSIGN

ID(x) NUM(2)

LESSTHAN

ID(x) NUM(2)

LPAREN ID(x)

LESSTHAN NUM(2)

RPAREN LCURLY

ID(x) EQUALS

NUM(2) SEMICOLON

Parser

condition body

left rightleft right

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Describing a Programming Language

❖ Many ways to define programming languages, some formal
▪ We won’t cover language definition in depth
▪ See CSE 341, CSE 401, CSE 402

❖ Example: Statements vs. Expressions

34

Statements
Perform an action

Expressions
Evaluate to a result

❖ Assignment Statement
x = y;

❖ If Statement
if (x == 0) {

x = y;
}

❖ Operators
x == 0;

❖ Variable
x

❖ Constant
24

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Describing a Programming Language

❖ These broad categories lend themselves well to recursive
definitions
▪ Easily express all possible configurations of the language

constructs

35

Symbolic
Example

if (x == 0) {
x = y;

}

General Definition of
an if Statement

if ()
{

}

EXPRESSION

STATEMENT

STATEMENT

...

Token Stream
Definition

EXPRESSION

IF LPAREN

RPAREN

LCURLY

RCURLY

STATEMENT

STATEMENT ...

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

The Parser: How?

❖ Like scanner: single pass-through token stream, building
up as we go

❖ Intuition: If we see and , we’re entering an
if statement and next we must see a complete expression
▪ Keep reading until we have a complete expression (recursively

parse that) and attach on the condition side of the
36

Token Stream

IF

Abstract Syntax Tree

IF

ASSIGN

ID(x) NUM(2)

LESSTHAN

ID(x) NUM(2)

LPAREN ID(x)

LESSTHAN NUM(2)

RPAREN LCURLY

ID(x) EQUALS

NUM(2) SEMICOLON

Parser

condition body

left rightleft right

IF LPAREN

IF

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Type Checking (Semantic Analysis)

❖ Given the abstract syntax tree, run checks over it to
ensure that it fits within constraints of the language
▪ Do the types match up?

❖ Collect additional info for code generation, such as
number/type of arguments in each function

37Abstract Syntax Tree

IF

ASSIGN

ID(x) NUM(2)

LESSTHAN

ID(x) NUM(2)

condition body

left rightleft right

Does this expression
evaluate to a Boolean?

Is the variable “x” defined
at this point?

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Optimization

❖ Code improvement: change correct code into
semantically equivalent but “better” code

❖ Example: If something is computed every iteration of a
while loop, the compiler could yank that computation out
and compute it just once before entering the loop
▪ Here, “better” means faster

❖ But requires caution: what if the value changes on each
iteration of the loop?
▪ “Semantically equivalent” means user sees same outcome

38

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Code Generation

❖ One way to think of compiler is converting from string in
source language to → its actual, abstract “meaning”

❖ Code generation is converting that “meaning” into a string
in the destination language

❖ Plenty of engineering details
▪ Example: if you want a stack frame/calling conventions for

function calls, you have to implement them yourself via
instructions generated by the compiler every time it sees a
function call

39

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Lecture Outline

❖ Midterm Debrief

❖ Introduction to the Compiler
▪ Overview, Scanner, Parser

❖ Project 6 Overview
▪ Midterm Corrections, Professor Meeting Report

40

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Project 6 Overview

41

PART I:
Midterm Redo

Due in one week

● Open-note, open-tool
● Midterm grade will be the

average of your score from
last Thursday and your redo
score

● Utilize the TAs for support!
● No late days

PART II:
Professor Meeting Report

Due in two weeks

● Cannot meet with Leslie or
Eric for this assignment

● Schedule your meeting early!
● Please do not say that this is

for an assignment...

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Post-Lecture 14 Reminders

❖ What’s in store for Week 8?
▪ More on compilers
▪ Debugging strategies
▪ Project 7 Overview

❖ Reminders
▪ Project 5 due tonight (2/17) at 11:59pm PST
▪ Schedule your professor meeting ASAP!

42

CSE 390B, Winter 2022L14: Midterm Debrief, Compilers

Title

❖ Content

43

