
CSE 390B, Winter 2022L13: Assembler, Operating System

CSE 390B, Winter 2022
Building Academic Success Through Bottom-Up Computing

Assembler,
Operating System

Inside the Assembler, The Software Stack, Fundamentals of
the Operating System (OS)

CSE 390B, Winter 2022L13: Assembler, Operating System

Lecture Outline

❖ Inside the Assembler
▪ Producing machine code, parsing, symbols, encoding

❖ The Software Stack
▪ Roadmap of hardware and software components

❖ Fundamentals of the Operating System (OS)
▪ OS abstraction, protection, and memory

2

CSE 390B, Winter 2022L13: Assembler, Operating System

Producing Machine Code

3

MEM CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100)
{
sum += arr[i];
i++;

}
Java

movq $5, %rdx
addq %rsx, %rdx
movq %rdx, %rax
ret

Assembly Language

Load & Execute

Compile

Assemble

CSE 390B, Winter 2022L13: Assembler, Operating System

The Assembler’s Job

4

D=D+1
Assemble

1 1 1 0 1 1 1 1 1 0 1 0 0 0 0

D nullD+1

1 1 1 a c c c c c c d d d j j j

Family:
0=A-Instr.
1=C-Instr.

Dest:
Where to
store result

Jump:
Condition
for jumping

Comp:
ALU Operation (a bit
chooses between A and M)

Unused

0 v v v v v v v v v v v v v v v

Value:
A 15-bit unsigned value
to load into A register

CSE 390B, Winter 2022L13: Assembler, Operating System

❖ Look up each value in the corresponding table

The Assembler’s Job

5

D=D+1
Assemble

1 1 1 0 1 1 1 1 1 0 1 0 0 0 0

D nullD+1

CSE 390B, Winter 2022L13: Assembler, Operating System

What Makes This Hard?

6

@12

D=A

@i

M=D // init

(LOOP)

@R3

MD = M-1

@LOOP

D;JGT

Assemble

0000000000001100

1110110000010000

0000000000010000

1110001100001000

0000000000000011

1111110010011000

0000000000000100

1110001100000001

1

2

3

4

5

6

7

8

9

Line #

0

1

2

3

4

5

6

7

Address

CSE 390B, Winter 2022L13: Assembler, Operating System

What Makes This Hard?

❖ Three broad concerns:

7

PARSING Recognizing type of each instruction/label, extracting
relevant fields, skipping whitespace & comments

SYMBOLS

Mapping from labels to instruction addresses, mapping
from code symbols to RAM addresses, creating new
symbols, corresponding line numbers to instruction
addresses

ENCODING Converting relevant fields to binary values, converting
symbol values to binary values

CSE 390B, Winter 2022L13: Assembler, Operating System

Bells and Whistles… Why Bother?

❖ Tradeoff: Adding convenience for programmer makes it
harder to build the Assembler
▪ E.g., removing symbols from Hack would make Assembler much

simpler, still possible to write all the same programs!
▪ But language would be far more annoying to use

8

CSE 390B, Winter 2022L13: Assembler, Operating System

Bells and Whistles… Why Bother?

❖ Tradeoff: Adding convenience for programmer makes it
harder to build the Assembler
▪ E.g., removing symbols from Hack would make Assembler much

simpler, still possible to write all the same programs!
▪ But language would be far more annoying to use

❖ Don’t underestimate the importance of convenience!
▪ Put another way: Adding these extra features makes

programmers more productive

9

CSE 390B, Winter 2022L13: Assembler, Operating System

Parsing

❖ Source code is just a giant string: we need to go
character-by-character to understand that string

❖ Parser presents iterator-like interface:
▪ To “advance” one instruction:

• Move cursor forward, skipping whitespace and comments, until next
non-empty line (ending on a newline)

▪ To “read” current instruction:
• Throw away whitespace & comments
• Determine what type of instruction
• Pull relevant fields out

10

CSE 390B, Winter 2022L13: Assembler, Operating System

Symbols: Labels

❖ Keep symbol table, mapping symbols (strings) to their
values (integers)
▪ Initialize with built-in symbols

11

SYMBOL VALUE

R0 0

R1 1

... ...

R15 15

SCREEN 16384

KBD 24576

CSE 390B, Winter 2022L13: Assembler, Operating System

Symbols: Labels

❖ Keep symbol table, mapping symbols (strings) to their
values (integers)
▪ Initialize with built-in symbols

❖ Run through instructions, using this
pseudocode:

12

SYMBOL VALUE

R0 0

R1 1

... ...

R15 15

SCREEN 16384

KBD 24576

If current line is (LABEL):
Add LABEL → next line number to
symbol table

If current line is @LABEL:
Lookup LABEL in symbol table,
insert value into A instruction

CSE 390B, Winter 2022L13: Assembler, Operating System

Symbols: Labels

❖ Problem: What if a label’s use comes before its definition?

13

@LOOP

0;JMP

D=M

(LOOP)

@var

1

2

3

4

5

Line #

CSE 390B, Winter 2022L13: Assembler, Operating System

Symbols: Labels

❖ Problem: What if a label’s use comes before its definition?

❖ Solution: Two passes!
▪ Pass 1: Populate symbol table by moving through file and ignoring

anything that isn’t a (LABEL) line
▪ Pass 2: Go through file again, ignoring

(LABEL) lines, encoding C-instructions, and
encoding A-instructions according to
symbol table lookup

14

@LOOP

0;JMP

D=M

(LOOP)

@var

1

2

3

4

5

Line #

CSE 390B, Winter 2022L13: Assembler, Operating System

Lecture Outline

❖ Inside the Assembler
▪ Producing machine code, parsing, symbols, encoding

❖ The Software Stack
▪ Roadmap of hardware and software components

❖ Fundamentals of the Operating System (OS)
▪ OS abstraction, protection, and memory

15

CSE 390B, Winter 2022L13: Assembler, Operating System

Roadmap

16

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

CSE 390B, Winter 2022L13: Assembler, Operating System

Roadmap

17

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

CSE 390B, Winter 2022L13: Assembler, Operating System

Roadmap

18

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

CSE 390B, Winter 2022L13: Assembler, Operating System

Roadmap

19

High-Level
Language

Intermediate
Language(s)

Assembly
Language

Machine Code

Operating
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Focus for the rest of
the course

CSE 390B, Winter 2022L13: Assembler, Operating System

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly
Language

Machine Code

Windows
macOS

Unix/Linux
Android
Hack OS

Operating
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level
Language

Intermediate
Language(s)

Compiler

Compiler

(VM Translator)

CSE 390B, Winter 2022L13: Assembler, Operating System

Lecture Outline

❖ Inside the Assembler
▪ Producing machine code, parsing, symbols, encoding

❖ The Software Stack
▪ Roadmap of hardware and software components

❖ Fundamentals of the Operating System (OS)
▪ OS abstraction, protection, and memory

21

CSE 390B, Winter 2022L13: Assembler, Operating System

The Operating System

❖ Just another piece of software!
▪ A massive, complex piece of software
▪ In the end, uses the same machine language your code does

❖ OS is more trusted than the rest of the software that runs
on your computer

❖ User programs/applications invoke (ask) the OS to
perform operations they are not trusted or allowed to
▪ Means the OS has to be secure

22

CSE 390B, Winter 2022L13: Assembler, Operating System

Why an Operating System?

❖ Directly interacts with the hardware

❖ Benefit: Abstraction
▪ Provides high-level functionality for messy hardware devices
▪ OS must be ported to new hardware; but user-level programs can

then be portable

❖ Benefit: Protection
▪ OS is trusted to touch hardware; user-level programs are not
▪ User-level programs cannot “break things”
▪ Maintains security between programs and user accounts

23

CSE 390B, Winter 2022L13: Assembler, Operating System

Operating System: Abstraction

❖ Many abstractions provided by real-world Operating
Systems!

❖ File System
▪ File contents = just bits in the “giant array” that is the hard drive

(“permanent” storage, as opposed to temporary storage in RAM
that disappears when computer is turned off)

▪ OS keeps a record of which ones fall into which “files”

24

CSE 390B, Winter 2022L13: Assembler, Operating System

Operating System: Abstraction

❖ Many abstractions provided by real-world Operating
Systems!

❖ Network Stack
▪ Communicating with network devices ≈ communicating with

screen/keyboard memory map
▪ OS handles messy, time-sensitive protocols

❖ Processes
▪ Only one process can run at once on a CPU
▪ OS switches very quickly, illusion of running both “at once”

25

CSE 390B, Winter 2022L13: Assembler, Operating System

Operating System: Protection

❖ The CPU has different “privilege” levels when it is
executing (controlled by a register on the CPU)

❖ OS code and memory can only be executed by an OS
privilege level
▪ Your applications run at a lower level and cannot access OS code

and memory

❖ This prevents applications from crashing entire system
▪ For example, if your web browser crashes, usually it doesn’t crash

your entire computer!
▪ Also helpful for security purposes

26

CSE 390B, Winter 2022L13: Assembler, Operating System

Operating System: Processes

❖ A “process” is an application running on your computer
▪ E.g., your web browser, terminal, Microsoft Word, etc.

❖ Each app instance contained in one or more processes
▪ The OS manages these processes

❖ Multiple processes are “running” at the same time, but
it’s just the OS quickly switching between them

❖ A process only has access to its memory, and cannot
access the memory of other processes
▪ This is helpful because if one process crashes or is malicious, it

makes it more difficult to crash or corrupt other processes too
27

CSE 390B, Winter 2022L13: Assembler, Operating System

Why Not an Operating System?

❖ The Hack computer we’ve built is… small
▪ Uses the same principles as your laptop CPU
▪ But in terms of scale, closer to a microprocessor or small

embedded chip

❖ For embedded systems, often an OS is overkill—instead,
designed to be programmed with/run a single program at
a time
▪ Pro: developer gets complete control over the device
▪ Con: re-implement OS features, no protection

28

CSE 390B, Winter 2022L13: Assembler, Operating System

Virtual Memory

❖ Most OS’s allow multiple
processes, but shouldn’t be
able to modify values in
another’s address space

❖ OS provides illusion of
separate address spaces via
virtual memory
▪ Really all one physical memory
▪ OS & hardware map pieces of

virtual memory to pieces of
physical memory

29

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

CSE 390B, Winter 2022L13: Assembler, Operating System

Virtual Memory

❖ Pro:
▪ Security: programs only know

about their own address space
• Don’t even have a way to

describe address of other
application’s data

❖ Con:
▪ Efficiency: virtual address

translation is fast nowadays but
still slower than directly
accessing memory (what
microprocessors do)

30

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

virtual registers,
variables

stack

heap

screen memory
map

keyboard
memory map

CSE 390B, Winter 2022L13: Assembler, Operating System

Comparison of Operating Systems

31

❖ Three different ways to do pretty much the same thing
▪ Everyone has their own preference

❖ Each have their own benefits/tradeoffs
▪ Work on varying types of hardware, provide different levels of

customization, different features, work better with different
softwares, open source vs. proprietary, etc.

❖ You could choose to do some research next time you are
deciding on a laptop/computer/OS

CSE 390B, Winter 2022L13: Assembler, Operating System

Post-Lecture 13 Reminders

❖ Project 5: Building a Computer Part II and Timed Mocked
Exam due this Thursday (2/17) at 11:59pm PST

❖ Midterm will be graded with feedback by Wednesday
(2/16) evening

❖ Thursday’s Lecture: Midterm Debrief and the Compiler

❖ Please submit the mid-quarter feedback form if you
haven’t already!

32

https://forms.gle/g7KTXsnTnyHELZFy6

