CSE 390B, Winter 2022
Building Academic Success Through Bottom-Up Computing

Assembler,
Operating System

Inside the Assembler, The Software Stack, Fundamentals of
the Operating System (OS)

YA/ UNIVERSITY of WASHINGTON

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Lecture Outline

% Inside the Assembler
* Producing machine code, parsing, symbols, encoding

< The Software Stack
= Roadmap of hardware and software components

<% Fundamentals of the Operating System (OS)
= OS abstraction, protection, and memory

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Producing Machine Code

while (i < 100)

{ Compile
sum += arr[i];
it++;
}
Java
MEM CPU
0101110011100110
1011000101010100
1110001011111100 PROGRAM

REGISTERS

CONTROL

Machine Code Instructions ‘ DATA

Load & Execute

movg $5, %rdx
addg %rsx, %rdx
movq %rdx, %rax
ret

Assemble
Assembly Language

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Value:

The Assembler’s JOb A 15-bit unsigned value

to load into A register

4 \

0 v v . v . v v Vv Vv Vv v v Vv v Vv Vv Vv

1 a ¢c c c c ¢ ¢ d d d 3 3 73

J \\ J

Family:

Comp:
ALU Operation (a bit
chooses between A and M)

Dest: Jump :

Where to Condition
store result | for jumping

0=A-Instr.
1=C-Instr.

D=D+1 1 011111010000

Assemble

\ J J

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

The Assembler’s Job

D=D+1 1 011111 00O

Assemble

\ J \ J

< Look up each value in the corresponding table

i1 j2 i3

(out <0) (out=0) (out >0) Mnemonic Ffect (when a=0') cl c2 c3 c4 c5 c6 (when a=1) .
. comp mnemonic comp mnemonic
0 0 0 null No jump
0 0 1 JGT If out > 0 jump 0 1 o 1 o0 1 0
0 1 0 JEQ If out = 0 jump 1 11 1 1 1 1
0 1 1 JGE If out > 0 jump -1 11 1 o 1 0
1 0 0 JLT If out < 0 jump D [1 1 [
1 0 1 JNE If out # 0 jump A 1 1 0o o0 o0 O M
1 1 0 JLE If out < 0 jump 'D 0o 0 1 1 0 1
1 1 1 JMp Jump 11 1 1 0 0 0 1 ™M
-D o o 1 1 1 1
) -A 1 1 o o0 1 1 -M
dl d2 a3 Mnemonic Destination (where to store the computed value)
D+1 o 1 1 1 1 1
0 0 0 null The value is not stored anywhere A+l 1 1 0 1 1 1 M+1
o o0 1 M Memory[A] (memory register addressed by A) D-1 o o 1 1 1 o
0 1 0 D D register A-1 1 1 0 0 1 0 M-1
o 1 1 MD Memory[A] and D register D+A o 0o o0 o 1 o0 D+M
1 0 0 A A register D-A 0 1 0 0 1 1 D-M
1 0 1 AM A register and Memory[A] A-D o o o0 1 1 1 M-D
1 1 0 AD A register and D register D&A 0o 0 0 0 0 0 D&M
1 1 1 AMD A register, Memory[A], and D register D|a o 1 o0 1 o0 1 D|M

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

What Makes This Hard?

Line # Address

1 @12 0O 0000000000001100

2 D= 1 1110110000010000

3 @i 2 0000000000010000

4 M=D // init 3 1110001100001000
>

Z (LOOP) Assemble

6 @R3 4 0000000000000011

7 MD = M-1 5 1111110010011000

8 @LOOP 6 0000000000000100

9 D;JGT 7 1110001100000001

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

What Makes This Hard?

% Three broad concerns:

Recognizing type of each instruction/label, extracting

Al relevant fields, skipping whitespace & comments
Mapping from labels to instruction addresses, mapping
SYMBOLS from code symbols t(? RA.M addresses, crgatmg n-ew
symbols, corresponding line numbers to instruction
addresses
ENCODING Converting relevant fields to binary values, converting

symbol values to binary values

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Bells and Whistles... Why Bother?

<% Tradeoff: Adding convenience for programmer makes it

harder to build the Assembler

= E.g., removing symbols from Hack would make Assembler much
simpler, still possible to write all the same programs!
= But language would be far more annoying to use

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Bells and Whistles... Why Bother?

<% Tradeoff: Adding convenience for programmer makes it

harder to build the Assembler

= E.g., removing symbols from Hack would make Assembler much
simpler, still possible to write all the same programs!
= But language would be far more annoying to use

<+ Don’t underestimate the importance of convenience!

= Put another way: Adding these extra features makes
programmers more productive

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Parsing

< Source code is just a giant string: we need to go
character-by-character to understand that string

<% Parser presents iterator-like interface:
= To “advance” one instruction:
* Move cursor forward, skipping whitespace and comments, until next
non-empty line (ending on a newline)
= To “read” current instruction:

* Throw away whitespace & comments
* Determine what type of instruction
* Pull relevant fields out

10

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System

Symbols: Labels

CSE 390B, Winter 2022

<% Keep symbol table, mapping symbols (strings) to their

values (integers)

= Initialize with built-in symbols SYMBOL | VALUE
RO 0
R1 1
R15 15
SCREEN 16384
KBD 24576

11

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System

Symbols: Labels

CSE 390B, Winter 2022

<% Keep symbol table, mapping symbols (strings) to their

values (integers)
= |nitialize with built-in symbols

<% Run through instructions, using this
pseudocode:

If current line is (LABEL) :

Add LABEL - next line number to
symbol table

If current line is @QLABEL:

Lookup LABEL in symbol table,
insert value into A instruction

SYMBOL VALUE
RO 0

R1l 1

R15 15
SCREEN 16384
KBD 24576

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Symbols: Labels

% Problem: What if a label’s use comes before its definition?

Line #
1 @LOOP
2 0;JMP
3 D=M
4 (LOOP)

5 @wvar

13

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Symbols: Labels

% Problem: What if a label’s use comes before its definition?

< Solution: Two passes!

= Pass 1: Populate symbol table by moving through file and ignoring
anything that isn’t a (LABEL) line

Line #
= Pass 2: Go through file again, ignoring
(LABEL) lines, encoding C-instructions, and 1 €LOOP
encoding A-instructions according to 2 0:JMP
symbol table lookup 5 eu
4 (LOOP)

5 @wvar

14

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Lecture Outline

% Inside the Assembler
= Producing machine code, parsing, symbols, encoding

<+ The Software Stack
= Roadmap of hardware and software components

<% Fundamentals of the Operating System (OS)
= OS abstraction, protection, and memory

15

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Roadmap

Intermediate
Language(s)

Assembly Operating
Language System
Machine Code

HARDWARE o

Basic Logic Gates

NAND

16

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Roa d ma High-Level
p Language
Intermediate
Language(s)
Assembly Operating
Language System

Machine Code

HARDWARE o
»

‘ Memory CPU ’

¥
PC

‘ALU’

¥

Basic Logic Gates

NAND

17

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Roa d ma High-Level
p Language
Intermediate
Language(s)
Assembly Operating
Language System

Machine Code

HARDWARE o
»

‘ Memory CPU ’

¥
PC

‘ALU’

¥

Basic Logic Gates

NAND

18

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Roadmap

‘ Focus for the rest of

Intermediate the course
Language(s)

. 4

Assembly Operating
Language System
Machlne Code

HARDWARE
l

‘ Memory CPU

o

ALU ’ PC ’

Basic Logic Ga tes

NAND

19

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

SOftWa re High-Level Py:l?(‘),:
. Language C/C++
Overview Q :

Intermediate Java Byte Code
Language(s) Jack VM Code

(VM Translator)

Jack

x86, x86-64 Windows

Assembly ARM Operating Unixr;‘l?i(r:z)s(
- System
Language RISC-V y Android

L34 Hack OS

Machine Code

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Lecture Outline

% Inside the Assembler
= Producing machine code, parsing, symbols, encoding

< The Software Stack
= Roadmap of hardware and software components

<+ Fundamentals of the Operating System (OS)
= OS abstraction, protection, and memory

21

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

The Operating System

< Just another piece of software!
= A massive, complex piece of software
" |n the end, uses the same machine language your code does

% OS is more trusted than the rest of the software that runs
on your computer

< User programs/applications invoke (ask) the OS to

perform operations they are not trusted or allowed to
= Means the OS has to be secure

22

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Why an Operating System?

< Directly interacts with the hardware

% Benefit: Abstraction

= Provides high-level functionality for messy hardware devices
= OS must be ported to new hardware; but user-level programs can
then be portable

% Benefit: Protection

= OSis trusted to touch hardware; user-level programs are not
= User-level programs cannot “break things”
= Maintains security between programs and user accounts

23

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Operating System: Abstraction

<% Many abstractions provided by real-world Operating
Systems!

< File System
= File contents = just bits in the “giant array” that is the hard drive
(“permanent” storage, as opposed to temporary storage in RAM
that disappears when computer is turned off)
= OS keeps a record of which ones fall into which “files”

24

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Operating System: Abstraction

<% Many abstractions provided by real-world Operating
Systems!

% Network Stack

= Communicating with network devices = communicating with
screen/keyboard memory map
= OS handles messy, time-sensitive protocols

% Processes

= Only one process can run at once on a CPU
= OS switches very quickly, illusion of running both “at once”

25

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Operating System: Protection

<% The CPU has different “privilege” levels when it is
executing (controlled by a register on the CPU)

<% OS code and memory can only be executed by an OS
privilege level

= Your applications run at a lower level and cannot access OS code
and memory

<% This prevents applications from crashing entire system

= For example, if your web browser crashes, usually it doesn’t crash
your entire computer!

= Also helpful for security purposes

26

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Operating System: Processes

% A “process” is an application running on your computer
= E.g., your web browser, terminal, Microsoft Word, etc.

< Each app instance contained in one or more processes
= The OS manages these processes

<% Multiple processes are “running” at the same time, but
it’s just the OS quickly switching between them

<% A process only has access to its memory, and cannot

access the memory of other processes
= This is helpful because if one process crashes or is malicious, it
makes it more difficult to crash or corrupt other processes too

27

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Why Not an Operating System?

<% The Hack computer we’ve built is... small
= Uses the same principles as your laptop CPU

= But in terms of scale, closer to a microprocessor or small
embedded chip

<% For embedded systems, often an OS is overkill—instead,
designed to be programmed with/run a single program at

a time

= Pro: developer gets complete control over the device
= Con: re-implement OS features, no protection

28

CSE 390B, Winter 2022

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System

Virtual Memory

<% Most OS’s allow multiple
processes, but shouldn’t be
able to modify values in
another’s address space

<% OS provides illusion of
separate address spaces via

virtual memory

= Really all one physical memory

= OS & hardware map pieces of
virtual memory to pieces of
physical memory

virtual registers,
variables

Sa

29

YA/ UNIVERSITY of WASHINGTON

CSE 390B, Winter 2022

L13: Assembler, Operating System

virtual registers,
variables

Virtual Memory

stack

% Pro:
= Security: programs only know
about their own address space

* Don’t even have a way to
describe address of other
application’s data
% Con:

= Efficiency: virtual address
translation is fast nowadays but
still slower than directly
accessing memory (what
microprocessors do)

virtual registers,
variables

stack

screen memory
map

keyboard
memory map

Sa

30

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Comparison of Operating Systems

<% Three different ways to do pretty much the same thing
= Everyone has their own preference

< Each have their own benefits/tradeoffs

= Work on varying types of hardware, provide different levels of
customization, different features, work better with different
softwares, open source vs. proprietary, etc.

<% You could choose to do some research next time you are
deciding on a laptop/computer/OS

31

YA/ UNIVERSITY of WASHINGTON L13: Assembler, Operating System CSE 390B, Winter 2022

Post-Lecture 13 Reminders

<% Project 5: Building a Computer Part Il and Timed Mocked
Exam due this Thursday (2/17) at 11:59pm PST

% Midterm will be graded with feedback by Wednesday
(2/16) evening

<% Thursday’s Lecture: Midterm Debrief and the Compiler

<+ Please submit the mid-quarter feedback form if you

haven’t already!

32

https://forms.gle/g7KTXsnTnyHELZFy6

