CSE 390B, Winter 2022

Building Academic Success Through Bottom-Up Computing

Midterm Exam Review, Project 5 Overview

Exam Review Session, Project 5 Demo, Hack CPU Logic

W UNIVERSITY of WASHINGTON

CSE 390B Midterm Brainstorm

CSE 390B Exam Review Session

- Circuit Design, Writing Assembly, Tracing Assembly
- Project 5 Overview
 - Timed Mock Exam, Building a Computer, Project Tips
- Hack CPU Logic Example: writeM

CSE 390B Midterm Brainstorm

Based on what we've covered thus far in class, what are topics, concepts, questions that you might expect to show-up on next week's midterm?

- CSE 390B Midterm Brainstorm
- CSE 390B Exam Review Session
 - Circuit Design, Writing Assembly, Tracing Assembly
- Project 5 Overview
 - Timed Mock Exam, Building a Computer, Project Tips
- Hack CPU Logic Example: writeM

Review Session Activity

Work through three practice problems in teams

- Circuit Design, Writing Assembly, Tracing Assembly
- For each problem:
 - Step 1: Spend 7-8 minutes working on the problem individually
 - Step 2: Spend 7-8 minutes as a group comparing and contrasting how you solved the problem
 - Step 3: Spend 5 minutes as a group discussing what tips you would recommend for approaching this type of exam problem and write it on the whiteboard
 - Step 4: Identify who in your group will demonstrate solving the problem to the class and who will present tips for approaching this type of problem

What now?

Based on your experience with this exercise, how does it inform how you approach your studying?

What resources can you utilize to help you deepen your understanding?

Previous CSE 390B Midterms

We have three old midterms from previous quarters

- Spring 2020 is likely more difficult than the midterm this quarter
- Winter 2021 & Spring 2021 are more similar to what this quarter's midterm will look like
- Spring 2020 midterm recommended to become familiar with problem types
- Winter and Spring 2021 midterms recommended for practicing a timed exam
 - Set a timer for 50 minutes and take the exam in its entirety
 - Doing so help you practice time management

- CSE 390B Midterm Brainstorm
- CSE 390B Exam Review Session
 - Circuit Design, Writing Assembly, Tracing Assembly
- Project 5 Overview
 - Timed Mock Exam, Building a Computer, Project Tips
- Hack CPU Logic Example: writeM

Project 5: Overview

- Timed Mock Exam Problem
- Build a Computer
 - LoadAReg.hdl, LoadDReg.hdl (Easier)
 - JumpLogic.hdl (Medium)
 - **CPU.hdl** (Harder)
 - Computer.hdl (Easier)

Project 5: Timed Mock Exam Problem

- Your group will meet for a 30-minute session to do one mock exam problem
 - Your group's mock exam problem will be emailed right before your session
- Your 30-min session will include:
 - Set-Up: 5 minutes
 - Mock Exam Problem: 10 minutes
 - Debrief & Reflection: 15 minutes
- Complete and submit the reflection questions

Project 5 Tips

- CPU.hdl: We provide an overview diagram, but there are several details to fill in, especially control
 - Crucial to draw your own detailed diagram first
 - Handling jumps will require a lot of logic; sketch out all cases
 - Chapter 4 and 5 are going to be extremely useful
- Multi-Bit Buses: MSB to the left, LSB to the right
 - Important to keep in mind when taking apart the instruction
- Debugging: Consult .out and .cmp files when getting buggy output, then look at internal wires in simulator
 - See also the "Debugging tips" section of the spec

Hack CPU Logic

- How do we determine the unimplemented logic for the CPU (all of the c's in the diagrams)?
- Need to refer to the assembly specification
- Project 5 will requires understanding of textbook chapters to determine how to use the instruction bits to implement the control logic
 - Textbook sections 4.2.2, 4.2.3, and 5.3.1 are especially helpful

Hack CPU Logic Workflow

Step 1: What do we pay attention to?

- Usually, will be some combination of instruction bits or intermediate outputs
- These are the "inputs" to your sub-problem

Step 2: Determine logic for the part you are working on

- Uses the "inputs" from step 1
- Usually requires reading a relevant section of the textbook/assembly specification

- CSE 390B Midterm Brainstorm
- CSE 390B Exam Review Session
 - Circuit Design, Writing Assembly, Tracing Assembly
- Project 5 Overview
 - Timed Mock Exam, Building a Computer, Project Tips
- Hack CPU Logic Example: writeM

Hack CPU Logic Example: writeM

Example: Determine when writeM should be set to 1

Step 1: What do we pay attention to?

- writeM is related to whether we write to memory or not
- We need to look up the destination bits specification from Chapter 4

d1	d2	d 3	Mnemonic	Destination (where to store the computed value)
0	0	0	null	The value is not stored anywhere
0	0	1	м	Memory[A] (memory register addressed by A)
0	1	0	D	D register
0	1	1	MD	Memory[A] and D register
1	0	0	A	A register
1	0	1	AM	A register and Memory[A]
1	1	0	AD	A register and D register
1	1	1	AMD	A register, Memory[A], and D register

Figure 4.4 The *dest* field of the *C*-instruction.

Hack CPU Logic Example: writeM

Example: Determine when writeM should be set to 1

Step 2: Determine logic for specification

- Read the "Destination Specification" section of Chapter 4
- Instruction bits:

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

d1	d2	d 3	Mnemonic	Destination (where to store the computed value)
0	0	0	null	The value is not stored anywhere
0	0	1	м	Memory[A] (memory register addressed by A)
0	1	0	D	D register
0	1	1	MD	Memory[A] and D register
1	0	0	A	A register
1	0	1	АМ	A register and Memory[A]
1	1	0	AD	A register and D register
1	1	1	AMD	A register, Memory[A], and D register

Figure 4.4 The *dest* field of the *C*-instruction.

Hack CPU Implementation: Logic sub-chips

- We provide you with 3 sub-chips and tests that implement the control logic for the A Register, D Register, and PC
 - LoadAReg contains logic for loading the A Register
 - LoadDReg contains logic for loading the D Register
 - JumpLogic contains logic for determining if the PC should load, jump, or increment
- Implement and test these first, then use them in your CPU implementation
 - Intended to help you narrow the scope of bugs

Post-Lecture 10 Reminders

- What's in store for Week 6?
 - CSE 390B mock midterm exam practice
 - CSE 390B Midterm Exam: 2/10 at 1:30pm during in-person lecture
- Project Reminders
 - Project 3 grades released on Gradescope
 - Project 4 due tonight (2/3) at 11:59pm PST
 - Project 5: Building a Computer Part II, Timed Mock Exam to be released today
 - Due in two weeks (2/17) at 11:59pm PST