
CSE 390B, Winter 2022L08: Hack Assembly

CSE 390B, Winter 2022
Building Academic Success Through Bottom-Up Computing

More Hack Assembly,
Project 4 Overview

Hack Assembly Language, Hack Memory Representation, 
Project 4 Overview

If joining virtually, please have your camera turned on if you can!



CSE 390B, Winter 2022L08: Hack Assembly

Lecture Outline

❖ Hack Assembly Language
▪ Registers, A-Instructions, Symbols, C-Instructions

❖ Hack Assembly Memory Representation
▪ Input / Output, Memory Mapping, External / Internal Memory

❖ Multiplication Implementation Exercise
▪ How do we multiply two numbers in the Hack Assembly 

language?

❖ Project 4: Machine Language and Annotation Overview
▪ Annotation, Assembly Language, Building a Computer Part I, Mid-

quarter Reflection
2



CSE 390B, Winter 2022L08: Hack Assembly

The Hack Computer

❖ The hardware you 
will build
▪ 16-bit word size
▪ ROM: sequence of 

instructions
• ROM[0], RAM[1]…

▪ RAM: data sequence
• RAM[0], RAM[1]…

33

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions, 

Read-Only)

1110001011111100

RAM
(16-bit Data, 
Read/Write)

1100101010010101
PC

A/M D



CSE 390B, Winter 2022L08: Hack Assembly

The Hack Machine Language

❖ Two types of 
instructions (16-bit)
▪ A-instructions load 

data
▪ C-instructions do 

computations

❖ Program: sequence 
of instructions

44

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions, 

Read-Only)

1110001011111100

RAM
(16-bit Data, 
Read/Write)

1100101010010101
PC

A/M D



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Control Flow

❖ Startup
▪ Hack instructions loaded into ROM
▪ Reset signal initializes computer state (instruction 0)

❖ Execution
▪ Usually, advance to next instruction each cycle
▪ On jump instruction, write a different address into the PC

5

0101110011100110
1011000101010100
1110001011111100
0101110101101110
0001011000111010
0010111011011001
0110111110101001
0001110010110110

ROM (Instructions)

0
1
2
3
4
5
6
7

...



CSE 390B, Winter 2022L08: Hack Assembly

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs 

the instruction at address 24 in the code segment

6

PC

load

in

16

out

16

inc reset

next cycle, replace 
counter value with in

(ex. method calls)

next cycle, add 1 to 
counter value

(ex. normal operation)

next cycle, set counter 
to 0

(ex. program start)



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Registers

❖ D Register: For storing data

❖ A Register: For storing data and addressing memory

❖ M “Register”: The 16-bit word of memory currently being 
referenced by the address in A 

7

REGISTERS

A
108

D

RAM

1100101010010101

...
106
107
108
109
110
...

M



CSE 390B, Winter 2022L08: Hack Assembly

Hack: A-Instructions

❖ Syntax:

❖ value can either be:
▪ A non-negative decimal constant
▪ A symbol referring to a constant

❖ Semantics:
▪ Stores value in the A register

8

@value



CSE 390B, Winter 2022L08: Hack Assembly

Hack: A-Instructions

❖ Symbolic Syntax

▪ Loads a value into the A 
register

❖ Example:

9

❖ Binary Syntax

0000000000010101

Family:
A-Instruction

Value:
Binary 
encoding of 21

@value

A Register

0

D Register

0

A Register

21

D Register

0

...

@21

...



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Symbols

❖ Symbols are simply an alias for some address
▪ Only in the symbolic code—don’t turn into a binary instruction
▪ Assembler converts use of that symbol to its value instead

❖ Example:

10

@3
D=0

(LOOP)  
@21
D=1
@LOOP

...

00
01

02
03
04

0000000000000011
1110101010010000
0000000000010101
1110111111010000
0000000000000010

...

00
01
02
03
04

Assemble

LOOP = 02



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Built-In Symbols

❖ Using ( ) defines a symbol in ROM / Instructions
❖ Assembler knows a few built-in symbols in RAM/Data
❖ R0, R1, ..., R15: Correspond to addresses at the 

very beginning of RAM (0, 1, …, 15)
▪ “Virtual registers,” Useful to store variables

❖ SCREEN, KBD: Base of I/O Memory Maps
❖ Example:

11

A Register

0

D Register

0

A Register

3

D Register

0

...

@R3

...



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions

❖ Syntax: (dest and jump are optional)
▪ dest is a combination of destination registers:

▪ comp is a computation:

▪ jump is an unconditional or conditional jump:

❖ Semantics:
▪ Computes value of comp
▪ Stores results in dest (if specified)
▪ If jump is specified and condition is true (by testing comp result), 

jump to instruction ROM[A]

12

dest = comp ; jump

M, D, MD, A, AM, AD, AMD

0, 1, -1, D, A, !D, !A, -D, -A, D+1, A+1, D-1, A-1, D+A, D-A, 
A-D, D&A, D|A, M, !M, -M, M+1, M-1, D+M, D-M, M-D, D&M, D|M

JGT, JEQ, JGE, JLT, JNE, JLE, JMP



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

13

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Jump:
Condition 
for jumping

Dest:
Where to 
store result

Comp:
ALU Operation (a bit 
chooses between A and M)

Unused
Family:
C-Instruction



CSE 390B, Winter 2022L08: Hack Assembly

❖ Symbolic:

❖ Binary:

Hack: C-Instructions

14

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Jump:
Condition 
for jumping

Chapter 4



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

15

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Dest:
Where to 
store result

Chapter 4



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

16

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Comp:
ALU Operation (a bit 
chooses between A and M)

Chapter 4 Important: just pattern 
matching text!
Can’t do “1+M”



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions Example

17

(EXAMPLE)

@55

D=A+1

00

01

A Register

55

D Register

56



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions

18

(EXAMPLE)

@55

D=A+1

@R2

M=D

00

01

02

03

RAM

0

1

2

?

?

56

...

A Register

55

D Register

56

A Register

2

D Register

56



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions

19

(EXAMPLE)

@55

D=A+1

@R2

M=D

@EXAMPLE

D;JGT

00

01

02

03

04

05

RAM

0

1

2

?

?

56

...

A Register

0

D Register

56

(will jump to instruction 0, since D > 0)

A Register

2

D Register

56

A Register

55

D Register

56



CSE 390B, Winter 2022L08: Hack Assembly

Lecture Outline

❖ Hack Assembly Language
▪ Registers, A-Instructions, Symbols, C-Instructions

❖ Hack Assembly Memory Representation
▪ Input / Output, Memory Mapping, External / Internal Memory

❖ Multiplication Implementation Exercise
▪ How do we multiply two numbers in the Hack Assembly 

language?

❖ Project 4: Machine Language and Annotation Overview
▪ Annotation, Assembly Language, Building a Computer Part I, Mid-

quarter Reflection
21



CSE 390B, Winter 2022L08: Hack Assembly

Lecture 3 Review: What is Binary?

❖ A base-n number system is a system of number 
representation with n symbols

❖ Decimal system is a base-10 number system
▪ Base-10 symbols: 0,	1,	2,	3,	4,	5,	6,	7,	8,	9
▪ Increase a number by moving to the next greatest symbol
▪ Add another digit when we run out of symbols

❖ Binary is a base-2 number system
▪ Often prefixed with 0b (e.g., 0b1101, 0b10)
▪ Base-2 symbols: 0,	1

22



CSE 390B, Winter 2022L08: Hack Assembly

Hexadecimal

❖ Base-16 number system
▪ Symbols: 0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F

❖ Commonly used for referring to memory addresses
▪ Simple to convert between binary and hexadecimal
▪ Hexadecimal uses fewer digits to represent a value than binary

❖ Uses the prefix 0x to indicate a number is written in 
hexadecimal
▪ 32 is decimal, 0x32 is hexadecimal

23



CSE 390B, Winter 2022L08: Hack Assembly

Binary and Hexadecimal Conversion

❖ One-to-one correspondence between binary and 
hexadecimal

❖ To convert from binary to hexadecimal, swap out binary 
bits digits for the corresponding hexadecimal digit (or vice 
versa)

❖ Example: 0x3A is 0b	0011	1010
▪ 0x3	==	0b0011
▪ 0xA	==	0b1010	

24



CSE 390B, Winter 2022L08: Hack Assembly

Number Representation Comparison

25

Decimal Hexadecimal Binary
0 0x0 0b0000
1 0x1 0b0001
2 0x2 0b0010
3 0x3 0b0011
4 0x4 0b0100
5 0x5 0b0101
6 0x6 0b0110
7 0x7 0b0111
8 0x8 0b1000
9 0x9 0b1001
10 0xA 0b1010
11 0xB 0b1011
12 0xC 0b1100
13 0xD 0b1101
14 0xE 0b1110
15 0xF 0b1111



CSE 390B, Winter 2022L08: Hack Assembly

Hack Assembly: Input/Output

❖ Two memory maps are created for you by underlying 
hardware (all you have to do is use them)
▪ Screen is a huge map where each pixel is one bit
▪ Keyboard is a single 16-bit word map with code of current key

❖ Example:

26

@KBD

D=M

@SCREEN

M=D

D contains code of current 
key (e.g. 67 for “C”) 

First 16 bits of screen (top 
left) show binary for 67



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Input/Output

❖ I/O is memory 
mapped
▪ Corresponds to some 

region of RAM
▪ Low-level drivers are 

constantly refreshing

27

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM

1110001011111100

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

PC

A/M D



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Memory Mapped Output

❖ Each bit of the screen memory map corresponds to one 
pixel (1 = black, 0 = white)

❖ The start of the memory map is accessible via the SCREEN 
symbol in Hack.asm

28

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

SCREEN



CSE 390B, Winter 2022L08: Hack Assembly

Hack: External Memory Abstraction

❖ Programmer sees one RAM32K memory region
▪ Only 16K + 8K + 1 registers are being used

❖ Split into three parts: Screen, Keyboard, and the rest
▪ Screen: 8K registers
▪ Keyboard: 1 register
▪ The rest: 16K registers (used for data and instructions)

❖ Programmer can use the same interface to interact with 
the Screen, Keyboard, or normal RAM
▪ Just specify address, value, and other inputs
▪ Address determines what part we are interacting with

29



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Internal Memory Implementation

❖ In reality, separate memory chips for memory devices is 
unnecessary
▪ “Drivers” are code relaying changes in memory values to the device

❖ In Hack, it’s not as simple as one RAM32K chip
▪ Use internal Keyboard and Screen chips so our virtual computer can 

detect/show changes in the keyboard and screen

❖ Our memory chip has three subchips: Screen, Keyboard, and 
RAM16K
▪ Process the address given by the programmer and relay the request 

to the appropriate subchip
30



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Memory Abstraction User View

31

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001
0010110101001000
1010001001001000
0010110101001000
1101101111101001
0010110101001000
1010001001001000
0010110101001000
1010001001001000
1101101111101001
0010110101001000
1010001001001000
1101101111101001

USER

Screen address

Keyboard address



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Memory Abstraction Internal View

32

USER IMPLEMENTATIO
N

RAM16K

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

SCREEN

1100101010010101
0110010101100000
1101010010111001

KEYBOARD

1100101010010101

RAM



CSE 390B, Winter 2022L08: Hack Assembly

Lecture Outline

❖ Hack Assembly Language
▪ Registers, A-Instructions, Symbols, C-Instructions

❖ Hack Assembly Memory Representation
▪ Input / Output, Memory Mapping, External / Internal Memory

❖ Multiplication Implementation Exercise
▪ How do we multiply two numbers in the Hack Assembly language?

❖ Project 4: Machine Language and Annotation Overview
▪ Annotation, Assembly Language, Building a Computer Part I, Mid-

quarter Reflection

33



CSE 390B, Winter 2022L08: Hack Assembly

Hack: Registers

❖ D Register: For storing data

❖ A Register: For storing data and addressing memory

❖ M “Register”: The 16-bit word of memory currently being 
referenced by the address in A 

34

REGISTERS

A
108

D

RAM

1100101010010101

...
106
107
108
109
110
...

M



CSE 390B, Winter 2022L08: Hack Assembly

Hack: A-Instructions

❖ Syntax:

❖ value can either be:
▪ A non-negative decimal constant
▪ A symbol referring to a constant

❖ Semantics:
▪ Stores value in the A register

35

@value



CSE 390B, Winter 2022L08: Hack Assembly

Hack: C-Instructions

❖ Syntax: (dest and jump are optional)
▪ dest is a combination of destination registers:

▪ comp is a computation:

▪ jump is an unconditional or conditional jump:

❖ Semantics:
▪ Computes value of comp
▪ Stores results in dest (if specified)
▪ If jump is specified and condition is true (by testing comp result), 

jump to instruction ROM[A]

36

dest = comp ; jump

M, D, MD, A, AM, AD, AMD

0, 1, -1, D, A, !D, !A, -D, -A, D+1, A+1, D-1, A-1, D+A, D-A, 
A-D, D&A, D|A, M, !M, -M, M+1, M-1, D+M, D-M, M-D, D&M, D|M

JGT, JEQ, JGE, JLT, JNE, JLE, JMP



CSE 390B, Winter 2022L08: Hack Assembly

Exercise: Implementing Multiplication 

❖ Write a program that multiplies R0 and R1 and stores the 
result in R2
▪ Remember we don’t have a multiply operation
▪ We will have to use add and loops to get the job done

❖ Roadmap
▪ Start with pseudocode using if statements, loops, etc.
▪ Remove conditionals and loops by using jumps in pseudocode
▪ Convert pseudocode to assembly

37



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Goal: Implement R0	× R1	=	R2

❖ Pseudocode, add R0 to the result R1 times:

38

R2 = 0
while (R1 > 0) {

R2 = R0 + R2
R1 = R1 - 1

}



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Remove loops from 
pseudocode

❖ Uses labels to notate 
important sections of the 
code

39

❖ Attempt 1: What happens 
when R1 is 0? What should 
happen?

R2 = 0
while (R1 > 0) {

R2 = R0 + R2
R1 = R1 - 1

}

START:  
R2 = 0

LOOP:
R2 = R0 + R2
R1 = R1 - 1
IF R1 > 0 JMP LOOP

END:
INFINITE LOOP



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Remove loops from 
pseudocode

❖ Uses labels to notate 
important sections of the 
code

40

❖ Attempt 1: What happens 
when R1 is 0? What should 
happen?

R2 = 0
while (R1 > 0) {

R2 = R0 + R2
R1 = R1 - 1

}

START:  
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Convert to Hack Assembly

41

START:  
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

(START)
@R2
M = 0

(LOOP)
(END)



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Convert to Hack Assembly

42

(START)
@R2
M = 0

(LOOP)
@R1
D = A
@END
D; JLE

(END)

START:  
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Convert to Hack Assembly

43

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE

(END)

START:  
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Convert to Hack Assembly

44

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE
@R0
D = M
@R2
M = M + D

(END)

START:  
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Convert to Hack Assembly

45

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE
@R0
D = M
@R2
M = M + D
@R1
M = M - 1
@LOOP
0; JMP

(END)

START:  
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP



CSE 390B, Winter 2022L08: Hack Assembly

Example: Implementing Multiplication 

❖ Convert to Hack Assembly

46

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE
@R0
D = M
@R2
M = M + D
@R1
M = M – 1
@LOOP
0; JMP

(END)
@END
0; JMP

START:  
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP



CSE 390B, Winter 2022L08: Hack Assembly

Lecture Outline

❖ Hack Assembly Language
▪ Registers, A-Instructions, Symbols, C-Instructions

❖ Hack Assembly Memory Representation
▪ Input / Output, Memory Mapping, External / Internal Memory

❖ Multiplication Implementation Exercise
▪ How do we multiply two numbers in the Hack Assembly 

language?

❖ Project 4: Machine Language and Annotation Overview
▪ Annotation, Assembly Language, Building a Computer Part I, 

Mid-quarter Reflection
47



CSE 390B, Winter 2022L08: Hack Assembly

Project 4 Overview

❖ Part I: Annotation 
▪ Come prepared to your upcoming Student-TA 1:1 meeting to 

work on Project 4 (e.g., spec reading and identifying annotation 
strategies you would want to use)

❖ Part II: Assembly Language

❖ Part III: Building a Computer Part I (Memory)

48



CSE 390B, Winter 2022L08: Hack Assembly

Project 4: Annotation Specs

❖ Annotate Project 4 Spec
▪ Identify 5 annotation strategies that you want to try
▪ Practice these strategies on the P4 Spec 

❖ Fill out the Assignment Timeline
▪ Divide up Project 4 into doable chunks for the days you plan to 

work on the assignment
▪ Describe each day’s task in as much detail as possible

49



CSE 390B, Winter 2022L08: Hack Assembly

Project 4: Annotation Specs

❖ Complete Annotation Reflection
▪ Reflect on the strategies you used and why or why not they were 

effective

❖ Submit a copy of your annotations along with the 
Assignment Timeline document and the Annotation 
Reflection document

50



CSE 390B, Winter 2022L08: Hack Assembly

Project 4: Tools

❖ Running a Test Script
(recommended flow):

❖ Quickly Iterating or Experimenting:

51

Max.asm Max.hack

Assembler CPUEmulator

The test scripts use the .hack 
files directly! Don’t let your 
.asm and .hack get out of sync!

Max.asm

CPUEmulator
Can still “run” the program, 
even without a script



CSE 390B, Winter 2022L08: Hack Assembly

Post-Lecture 8 Reminders

❖ What’s in store for Week 5?
▪ Technical Subject: Building a Computer
▪ Metacognitive Subject: Exam Preparation
▪ Project 5: Building a Computer Released 

❖ Project Reminders
▪ Project 2 grades released on Gradescope
▪ Project 3 due tonight (1/27) at 11:59pm PST
▪ Project 4: Machine Language and Annotation to be released today

• Due next Thursday (2/3) at 11:59pm PST

52


