CSE 390B, Winter 2022
Building Academic Success Through Bottom-Up Computing

More Hack Assembly,
Project 4 Overview

Hack Assembly Language, Hack Memory Representation,

Project 4 Overview
If joining virtually, please have your camera turned on if you can! E

YA/ UNIVERSITY of WASHINGTON

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Lecture Outline

<+ Hack Assembly Language
= Registers, A-Instructions, Symbols, C-Instructions

<+ Hack Assembly Memory Representation
= |nput / Output, Memory Mapping, External / Internal Memory

< Multiplication Implementation Exercise

= How do we multiply two numbers in the Hack Assembly
language?

Y/
%

Project 4: Machine Language and Annotation Overview
= Annotation, Assembly Language, Building a Computer Part |, Mid-
guarter Reflection

YA/ UNIVERSITY of WASHINGTON

L0O8: Hack Assembly

The Hack Computer

CSE 390B, Winter 2022

<% The hardware you
will build

COMPUTER

= 16-bit word size
= ROM: sequence of
instructions
° ROM[O],RAM[1]..
= RAM: data sequence
° RAM[O],RAM[1]..

SCREEN

KEYBOARD

MEMORY

ROM

(16-bit Instructions,
Read-Only)

1110001011111100

RAM

(16-bit Data,
Read/Write)

1100101010010101

m—p

CPU

REGISTERS

A/M D

CONTROL

PC

YA/ UNIVERSITY of WASHINGTON L08: Hack Assembly

The Hack Machine Language

CSE 390B, Winter 2022

<% Two types of

COMPUTER

instructions (16-bit)

= A-instructions load
data

= C-instructions do
computations

<% Program: sequence
of instructions

SCREEN

KEYBOARD

MEMORY

ROM

(16-bit Instructions, ‘

1110001011111100

Read-Only)

RAM

(16-bit Data,
Read/Write)

1100101010010101

CPU

REGISTERS

A/M

D

CONTROL

PC

YA/ UNIVERSITY of WASHINGTON

L08: Hack Assembly

Hack: Control Flow

< Startup

= Hack instructions loaded into ROM

= Reset signal initializes computer state (

% Execution

= Usually, advance to next instruction each cycle

CSE 390B, Winter 2022

= On jump instruction, write a different address into the PC

o ok WMV KR O

0101110011100110
1011000101010100
1110001011111100
0101110101101110
0001011000111010
0010111011011001
0110111110101001
0001110010110110

ROM (Instructions)

YA/ UNIVERSITY of WASHINGTON L08: Hack Assembly CSE 390B, Winter 2022

Program Counter (PC)

<% Keeps track of what instruction we are executing
= |f the PC outputs 24, on the next clock cycle the computer runs
the instruction at address 24 in the code segment

next cycle, replace next cycle, add 1 to next cycle, set counter
counter value with in counter value to0
(ex. method calls) (ex. normal operation) (ex. program start)
load inc reset
in out
16 16
JAN

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Registers

<% D Register: For storing data
<% A Register: For storing data and addressing memory

% M “Register”: The 16-bit word of memory currently being
referenced by the address in A

RAM

106

107 REGISTERS
M 1100101010010101 108

109 1 A D

110 108

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: A-Instructions

% Syntax: @value

% wvalue can either be:

= A non-negative decimal constant
= A symbol referring to a constant

< Semantics:
= Stores value in the A register

YA/ UNIVERSITY of WASHINGTON

Hack: A-Instructions

< Symbolic Syntax

@

= Loads a value into the A
register

<+ Example: _—
egister

— 0

()
N
ARA

A Register

21

L08: Hack Assembly

< Binary Syntax

CSE 390B, Winter 2022

Family:
A-Instruction

D Register

0

D Register

0

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Symbols

<% Symbols are simply an alias for some address
= Only in the symbolic code—don’t turn into a binary instruction
= Assembler converts use of that symbol to its value instead

<+ Example:

02
ol 00 0000000000000011
Loop) : 01 1110101010010000
Assemble 02 0000000000010101

gi gfi _ 03 1110111111010000
- 04 0000000000000010

04 @LOOP

10

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Built-In Symbols

< Using () defines a symbol in ROM / Instructions
< Assembler knows a few built-in symbols in RAM/Data

¢+ RO, R1, ..., R1l5:Correspond to addresses at the
very beginning of RAM (0, 1, ..., 15)
= “Virtual registers,” Useful to store variables

< SCREEN, KBD: Base of I/O Memory Maps

o .
% Exa m p l €. A Register D Register

— 0 0

@R3

A Register D Register

— 3 0

11

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: C-Instructions

<% Syntax: dest = comp ; jump (destand jump are optional)
= dest is a combination of destination registers:
M, D, MD, A, AM, AD, AMD
= comp is a computation:

o, 1, -1, b, A, 'D, 'A, -D, -A, D+1, A+l, D-1, A-1, D+A, D-A,
A-D, Ds&A, D|A, M, 'M, -M, M+l, M-1, D+M, D-M, M-D, D&M, D|M

= jump is an unconditional or conditional jump:
JGT, JEQ, JGE, JLT, JNE, JLE, JMP
< Semantics:
= Computes value of comp
= Stores results in dest (if specified)
= |f Jump is specified and condition is true (by testing comp result),
jump to instruction ROM[A]

12

YA/ UNIVERSITY of WASHINGTON L08: Hack Assembly CSE 390B, Winter 2022

Hack: C-Instructions

< Symbolic: dest = comp ; Jump

< Binary: 1 acl c2 c3 c4 c5 c6 dl d2 d3 j1 j2 53
\ J _ J \\ J

Comp: Dest:

Jump :
ALU Operation (a bit Where to
chooses between A and M) store result

Condition
for jumping

13

YA/ UNIVERSITY of WASHINGTON

L0O8: Hack Assembly

Hack: C-Instructions

< Symbolic: dest = comp

4

Jjump

< Binary: 1

acl c2 c3 c4 c5 c6 dl d2 d3 31 j2 33

Condition
for jumping

j1 j2 j3 .
(out < 0) (out=0) (out>0) Mnemonic Effect

0 0 0 null No jump

0 0 1 JGT If out > 0 jump
Chapter4 0 1 0 JEQ If out = 0 jump

0 1 1 JGE If out > 0 jump

1 0 0 JLT If out < 0 jump

1 0 1 JNE If out # 0 jump

1 1 0 JLE If out < 0 jump

1 1 1 JMP Jump

CSE 390B, Winter 2022

14

YA UNIVERSITY of WASHINGTON L08: Hack Assembly CSE 390B, Winter 2022

Hack: C-Instructions

<% Symbolic: = comp ; jump
@, 1 . - - -
< Binary: 1 acl c2 c3 c4 c5 c6 j1 j2 33
dl d2 d3 Mnemonic Destination (where to store the computed value)
0 o0 0 null The value is not stored anywhere
o o0 1 M Memory[A] (memory register addressed by A)
0 1 0 D D register
0o 1 1 MD Memory[A] and D register
Chapter 4 1 0 0 A A register

1 o0 1 AM A register and Memory[A]
1 1 0 AD A register and D register
1 1 1 AMD A register, Memory[A], and D register

15

YA/ UNIVERSITY of WASHINGTON

L0O8: Hack Assembly

Hack: C-Instructions

<% Symbolic:

< Binary: 1

comp

CSE 390B, Winter 2022

; Jjump

acl c2 ¢c3 c4 c5 cb6

jl j2 33

Chapter 4

\\ J
(When a=0) 1 c2 c3 c4 c5 cé6 (when a=1) Comp : : :
comp mnemonic ¢l ¢eé 3 c& o ¢ comp mnemonic ALU Operation (a bit
chooses between A and M)

0 1 0 1 0 1 o0

1 1 1 1 1 1 1

-1 1 1 1 0 1 o0

D o 0o 1 1 0 0

A 1 1 0 0 0 0 M

ID o o 1 1 o 1

1A 1 1 0 o0 0 1 M

-D o o 1 1 1 1

-A t 0 0 1 1 -M Important: just pattern
D+1 o 1 1 1 1 1)
A+1 1 1 60 1 1 1 M1 matching text!
D-1 0 0 1 1 1 0 Canlt dO ”1+M”
A-1 1 1 0 o0 1 o0 M-1
D+A o 0 o0 0 1 0 D+M
D-A o 1 o0 o0 1 1 D-M
A-D o o o 1 1 1 M-D
D&A o 0 0 0 o0 0 D&M
D|a 0 1 0 1 0 1 D|M 16

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: C-Instructions Example

A Register D Register

— 55 56

(EXAMPLE)
00 @55

01 D=A+1

<

17

YA/ UNIVERSITY of WASHINGTON

L08: Hack Assembly

Hack: C-Instructions

00
01
02
03

(EXAMPLE)

@55

A Register

55

A Register

2

D Register

56

D Register

56

RAM
0 ?
1 ?
2 56

CSE 390B, Winter 2022

18

YA/ UNIVERSITY of WASHINGTON

L08: Hack Assembly

Hack: C-Instructions

00
01
02
03
04
05

A Register
— 55
(EXAMPLE)
@55
D=<A+1 A Register
@R2 2
M=D
QEXAMPLE
D;JGT
A Register
— 0

(will jump to instruction O, since D > 0)

D Register

56

D Register

56

D Register

56

CSE 390B, Winter 2022

19

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Lecture Outline

<+ Hack Assembly Language
= Registers, A-Instructions, Symbols, C-Instructions

<+ Hack Assembly Memory Representation
* Input / Output, Memory Mapping, External / Internal Memory

< Multiplication Implementation Exercise

= How do we multiply two numbers in the Hack Assembly
language?

<% Project 4: Machine Language and Annotation Overview
= Annotation, Assembly Language, Building a Computer Part |, Mid-
guarter Reflection

21

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Lecture 3 Review: What is Binary?

<+ A base-n number system is a system of number
representation with n symbols

< Decimal system is a base-10 number system
= Base-10symbols: 0,1,2,3,4,5,6,7,8,9
= |ncrease a number by moving to the next greatest symbol
= Add another digit when we run out of symbols

< Binary is a base-2 number system

= Often prefixed with Ob (e.g., 0b1101, 0b10)
= Base-2 symbols: 0,1

22

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hexadecimal

< Base-16 number system
= Symbols: 0,1,2,3,4,5,6,7,89,A,B,C,D,E, F

% Commonly used for referring to memory addresses

= Simple to convert between binary and hexadecimal
= Hexadecimal uses fewer digits to represent a value than binary

<% Uses the prefix 0x to indicate a number is written in

hexadecimal
= 32 is decimal, 0x32 is hexadecimal

23

YA/ UNIVERSITY of WASHINGTON

L08: Hack Assembly CSE 390B, Winter 2022

Binary and Hexadecimal Conversion

<% One-to-one correspondence between binary and
hexadecimal

<% To convert from binary to hexadecimal, swap out binary

bits digits for the corresponding hexadecimal digit (or vice
versa)

<% Example: 0x3Ais 0b 0011 1010
= 0x3 ==0b0011
= 0xA==0b1010

24

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Number Representation Comparison

Decimal Hexadecimal Binary
0 0x0 0b0000
1 0x1 0b0001
2 0x2 0b0010
3 0x3 0b0011
4 0x4 0b0100
5 0x5 0b0101
6 0x6 0b0110
7 0x7 0b0111
8 0x8 0b1000
9 0x9 0b1001
10 OxA 0b1010
11 0xB 0b1011
12 0xC 0b1100
13 0xD 0b1101
14 OxE 0b1110
15 OxF Ob1111

25

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack Assembly: Input/Output

<+ Two memory maps are created for you by underlying

hardware (all you have to do is use them)
= Screen is a huge map where each pixel is one bit
= Keyboard is a single 16-bit word map with code of current key

<+ Example: CKED
DfM D contains code of current
key (e.g. 67 for “C”)
@SCREEN
M=D First 16 bits of screen (top

left) show binary for 67

- .

26

YA/ UNIVERSITY of WASHINGTON

Hack: Input/Output

< 1/O is memory
mapped

L0O8: Hack Assembly

CSE 390B, Winter 2022

COMPUTER

Corresponds to some
region of RAM

Low-level drivers are
constantly refreshing

SCREEN

KEYBOARD

MEMORY

ROM

1110001011111100

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
101101111101001

mp

CPU

REGISTERS

A/M

D

CONTROL

PC

27

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Memory Mapped Output

< Each bit of the screen memory map corresponds to one
pixel (1 = black, 0 = white)

<% The start of the memory map is accessible via the SCREEN

symbol in Hack.asm AR

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

SCREEN

28

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: External Memory Abstraction

<% Programmer sees one RAM32K memory region
= Only 16K + 8K + 1 registers are being used

< Split into three parts: Screen, Keyboard, and the rest

= Screen: 8K registers
= Keyboard: 1 register
= The rest: 16K registers (used for data and instructions)

% Programmer can use the same interface to interact with

the Screen, Keyboard, or normal RAM
= Just specify address, value, and other inputs
= Address determines what part we are interacting with

29

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Internal Memory Implementation

< In reality, separate memory chips for memory devices is

unnecessary
= “Drivers” are code relaying changes in memory values to the device

< In Hack, it’s not as simple as one RAM32K chip

= Use internal Keyboard and Screen chips so our virtual computer can
detect/show changes in the keyboard and screen

<% Our memory chip has three subchips: Screen, Keyboard, and
RAM16K

= Process the address given by the programmer and relay the request
to the appropriate subchip

30

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Memory Abstraction User View

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001
0010110101001000
1010001001001000
USER 0010110101001000
1101101111101001
0010110101001000
1010001001001000
0010110101001000
1010001001001000
1101101111101001
0010110101001000
1010001001001000
Keyboard address =——> 1101101111101001

Screen address >

31

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Memory Abstraction Internal View

RAM RAM16K

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

SCREEN

IMPLEMENTATIO ﬁ
USER N 1100101010010101

0110010101100000
1101010010111001

KEYBOARD

1100101010010101

32

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Lecture Outline

<+ Hack Assembly Language
= Registers, A-Instructions, Symbols, C-Instructions

<+ Hack Assembly Memory Representation
= |nput / Output, Memory Mapping, External / Internal Memory

<+ Multiplication Implementation Exercise
= How do we multiply two numbers in the Hack Assembly language?

% Project 4: Machine Language and Annotation Overview
= Annotation, Assembly Language, Building a Computer Part |, Mid-
guarter Reflection

33

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: Registers

<% D Register: For storing data
<% A Register: For storing data and addressing memory

% M “Register”: The 16-bit word of memory currently being
referenced by the address in A

RAM

106

107 REGISTERS
M 1100101010010101 108

109 1 A D

110 108

34

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: A-Instructions

% Syntax: @value

% wvalue can either be:

= A non-negative decimal constant
= A symbol referring to a constant

< Semantics:
= Stores value in the A register

35

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Hack: C-Instructions

<% Syntax: dest = comp ; jump (destand jump are optional)
= dest is a combination of destination registers:
M, D, MD, A, AM, AD, AMD
= comp is a computation:

o, 1, -1, b, A, 'D, 'A, -D, -A, D+1, A+l, D-1, A-1, D+A, D-A,
A-D, Ds&A, D|A, M, 'M, -M, M+l, M-1, D+M, D-M, M-D, D&M, D|M

= jump is an unconditional or conditional jump:
JGT, JEQ, JGE, JLT, JNE, JLE, JMP
< Semantics:
= Computes value of comp
= Stores results in dest (if specified)
= |f Jump is specified and condition is true (by testing comp result),
jump to instruction ROM[A]

36

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Exercise: Implementing Multiplication

<% Write a program that multiplies RO and R1 and stores the

result in R2

= Remember we don’t have a multiply operation
= We will have to use add and loops to get the job done

<% Roadmap
= Start with pseudocode using if statements, loops, etc.
= Remove conditionals and loops by using jumps in pseudocode
= Convert pseudocode to assembly

37

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

% Goal: Implement RO X R1 = R2

% Pseudocode, add RO to the result R1 times:

R2 =0

while (R1 > 0) {
R2 = RO + R2
Rl =R1 -1

38

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

<+ Remove loops from <+ Attempt 1: What happens
pseudocode when R1 is 0? What should
% Uses labels to notate happen?
important sections of the
code START:
R2 = 0
R2 = 0
R2 = RO + R2 — §i=§gt?2
Rl =Rl - 1
END :

INFINITE LOOP

39

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

<+ Remove loops from <+ Attempt 1: What happens
pseudocode when R1 is 0? What should
% Uses labels to notate happen?
important sections of the START :
code R2 = 0
R2 = 0
— JMP to END
R2 = RO + R2 R2 = RO + R2
R1I =Rl -1 R1 = R1 - 1
END :

INFINITE LOOP

40

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

< Convert to Hack Assembly

START:
LOOP: (START)
IF R1 <= 0
JMP to END mmmm)
R2 = RO + R2 (LOOF)
(END)

Rl =R1 -1
JMP LOOP

END:
INFINITE LOOP

41

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

< Convert to Hack Assembly

START: (START)
R2 = 0 @R2
M =0
(LOOP)
JMP to END mmmm)

R2 = RO + R2
Rl =R1 -1

END: (END)
INFINITE LOOP

42

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

< Convert to Hack Assembly

START: (START)
R2 = 0 @R2
M =0
(LOOP)
JMP to END mmmm)

R2 = RO + R2
Rl =R1 -1

END: (END)
INFINITE LOOP

43

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

<% Convert to Hack Assembly (START)
@R2
START : M=0
R2 =0 (LOOP)
LOOP: @R1
IF R1 <= 0 D=M
JMP to END) GEND
D; JLE
Rl =Rl - 1
JMP LOOP
END:

INFINITE LOOP
(END)

44

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

(START)
< Convert to Hack Assembly @R2
M =0
(LOOP)
GR1

START :
R2 =0
LOOP:
IF R1 <=0 D; JLE

JMP to END) @RO

R2 = RO + R2 D=M

END:
INFINITE LOOP

(END)

45

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Example: Implementing Multiplication

(START)
< Convert to Hack Assembly @R2
M =0
(LOOP)
START : QR1
R2 =0 D=M

L.OOP: GEND
D; JLE

IF R1 <=0 QRO

JMP to END mmmm) D =M

R2 = RO + R2 €Rr2
M=MS+D

Rl =Rl -1 QR1
JMP LOOP M=M-1
@LOOP
0; JMP
(END)

END:

46

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Lecture Outline

<+ Hack Assembly Language
= Registers, A-Instructions, Symbols, C-Instructions

<+ Hack Assembly Memory Representation
= |nput / Output, Memory Mapping, External / Internal Memory

< Multiplication Implementation Exercise

= How do we multiply two numbers in the Hack Assembly
language?

<+ Project 4: Machine Language and Annotation Overview
= Annotation, Assembly Language, Building a Computer Part |,
Mid-quarter Reflection

47

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Project 4 Overview

< Part |: Annotation
= Come prepared to your upcoming Student-TA 1:1 meeting to
work on Project 4 (e.g., spec reading and identifying annotation
strategies you would want to use)

< Part II: Assembly Language

< Part lll: Building a Computer Part | (Memory)

48

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Project 4: Annotation Specs

< Annotate Project 4 Spec
= |dentify 5 annotation strategies that you want to try
= Practice these strategies on the P4 Spec

< Fill out the Assignment Timeline

= Divide up Project 4 into doable chunks for the days you plan to
work on the assignment
= Describe each day’s task in as much detail as possible

49

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Project 4: Annotation Specs

<% Complete Annotation Reflection
= Reflect on the strategies you used and why or why not they were
effective

< Submit a copy of your annotations along with the
Assignment Timeline document and the Annotation
Reflection document

50

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Project 4: Tools

The test scripts use the .hack

@ Running d TeSt Scrlpt files directly! Don’t let your
: d .hack f !
(recommended flow): Rl B G2 GO

Max.asm Max.hack

Assembler

< Quickly Iterating or Experimenting:

Max.asm —

aam courer)

CPUEmulator

Can still “run” the program,
even without a script

51

YA/ UNIVERSITY of WASHINGTON LO8: Hack Assembly CSE 390B, Winter 2022

Post-Lecture 8 Reminders

<% What’s in store for Week 57
= Technical Subject: Building a Computer
= Metacognitive Subject: Exam Preparation
= Project 5: Building a Computer Released

<% Project Reminders
= Project 2 grades released on Gradescope
= Project 3 due tonight (1/27) at 11:59pm PST

= Project 4: Machine Language and Annotation to be released today
* Due next Thursday (2/3) at 11:59pm PST

52

