
CSE 390B, Winter 2022L06: Memory, Cornell Notes

CSE 390B, Winter 2022
Building Academic Success Through Bottom-Up Computing

Memory, Cornell
Note-Taking Method

Revisiting the Cornell Note-Taking Method, Building Memory



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Lecture Outline

❖ Cornell Note-Taking Review
▪ Group discussion: Compare and contrast notes

❖ Storing Data: Bit
▪ Bit overview and implementation

❖ Reading Review: Memory Representation
▪ Array abstraction, reading and writing memory

❖ Building Memory: Registers
▪ Building up from Bit to Register, then from Register to RAM

❖ Program Counter (PC) Overview
▪ How do we keep track of which instruction to execute?

2



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Cornell Note-Taking Discussion

❖ In small groups, compare and contrast your Cornell Notes 
from Tuesday’s lecture
▪ What are some of the key points you wrote in your summary?
▪ What were some of the questions you came up with?
▪ What are you still left feeling confused/uncertain about after 

Tuesday’s lecture?

3



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Lecture Outline

❖ Cornell Note-Taking Review
▪ Group discussion: Compare and contrast notes

❖ Storing Data: Bit
▪ Bit overview and implementation

❖ Reading Review: Memory Representation
▪ Array abstraction, reading and writing memory

❖ Building Memory: Registers
▪ Building up from Bit to Register, then from Register to RAM

❖ Program Counter (PC) Overview
▪ How do we keep track of which instruction to execute?

4



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Computer Overview

❖ CPU is the “brain” of our computer
▪ Does necessary computations (add, subtract, multiply, etc.)

❖ Memory is used to store values for later use
▪ Requires persistence across multiple computations
▪ Needs to change values at our discretion

5



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Storing Data: Bit

❖ A Flip-Flop changes state every clock cycle

❖ We will build the abstraction of a “Bit” that only changes 
when we instruct it to

6

Bit

load

in out

if load(t-1)    out(t) = in(t-1)
else            out(t) = out(t-1)



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Bit Behavior

7

0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

load

Bit

load

in outif load(t-1)    out(t) = in(t-1)
else            out(t) = out(t-1)



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Bit Behavior

8

0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

load

Bit

load

in outif load(t-1)    out(t) = in(t-1)
else            out(t) = out(t-1)



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Bit Time Series

❖ Bit Specification:

Example 1: load(t=0) == 1 so out(t=1) = in(t=0)

Example 2: load(t=2) == 0 so out(t=3) = out(t=2)
9

load 1 0 0 1 1 1 0 ...

in 1 0 0 0 1 0 1 ...

out 0 1 1 1 0 1 0 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

if (load(t-1)): out(t) = in(t-1)

else: out(t) = out(t-1)



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Vote at https://pollev.com/cse390b

❖ What gates will we need to implement a Bit? Select all 
that apply.

10

A. Mux
B. Xor
C. And
D. DFF
E. We’re lost…

if load(t-1)    out(t) = in(t-1)
else            out(t) = out(t-1)

Bit

load

in out



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Implementing a Bit

❖ Bit Specification:

❖ Exercise: Fill in the connections to the gates to create a 
circuit diagram of Bit
▪ May be helpful to review slides on Mux and sequential circuits

11

if load(t-1)    out(t) = in(t-1)
else            out(t) = out(t-1)

about:blank
about:blank


CSE 390B, Winter 2022L06: Memory, Cornell Notes

Implementing a Bit

❖ Bit Specification:

❖ Exercise: Fill in the connections to the gates to create a 
circuit diagram of Bit
▪ May be helpful to review slides on Mux and sequential circuits

12

if load(t-1)    out(t) = in(t-1)
else            out(t) = out(t-1)

about:blank
about:blank


CSE 390B, Winter 2022L06: Memory, Cornell Notes

Lecture Outline

❖ Cornell Note-Taking Review
▪ Group discussion: Compare and contrast notes

❖ Storing Data: Bit
▪ Bit overview and implementation

❖ Reading Review: Memory Representation
▪ Array abstraction, reading and writing memory

❖ Building Memory: Registers
▪ Building up from Bit to Register, then from Register to RAM

❖ Program Counter (PC) Overview
▪ How do we keep track of which instruction to execute?

13



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Reading Review: Memory Representation

❖ Memory can be abstracted as one huge array

❖ Addresses are indices into different memory slots
▪ The width of an address is fixed for the system
▪ The Nand2Tetris project will use 16-bit addresses

❖ Each slot in memory takes up a fixed width
▪ Not the same as address width
▪ The Nand2Tetris project uses 16-bit slots in memory

14



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Reading Review: Memory Representation

❖ Can read and write to memory by specifying an address
▪ More details next week

❖ Example: x = memory[01...00]
▪ Reads the value in memory at address 01...00 and stores it in x

❖ Example: memory[01...00] = 7
▪ Writes the value 7 in the memory slot at address 01...00

15



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Lecture Outline

❖ Cornell Note-Taking Review
▪ Group discussion: Compare and contrast notes

❖ Storing Data: Bit
▪ Bit overview and implementation

❖ Reading Review: Memory Representation
▪ Array abstraction, reading and writing memory

❖ Building Memory: Registers
▪ Building up from Bit to Register, then from Register to RAM

❖ Program Counter (PC) Overview
▪ How do we keep track of which instruction to execute?

16



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Building Memory: Register

❖ Bits store a single value (0 or 1)
▪ In memory, we need to store 16-bit values

❖ Registers are conceptually the same as a Bit
▪ Allows us to store and change 16-bit values
▪ Groups together 16 individual bits that share a load signal

// if (load(t-1)): out(t) = in(t-1)

//           else: out(t) = out(t-1)

CHIP Register {

IN in[16], load;

OUT out[16];

...

}
17



CSE 390B, Winter 2022L06: Memory, Cornell Notes

RAM: Random Access Memory

❖ Abstraction of Computer Memory: just a giant array

❖ Goal: Create hardware that can provide that abstraction

❖ Key attribute of arrays: “random access” lets us index into 
them at any point

18

0
0000000

0
0000000

-1
1111111

25
0011001

124
1111100

0
0000000

9
0001001

-15
1110001

24
11000

25
11001

26
11010

27
11011

28
11100

29
11101

30
11110

31
11111

... ...

memory[26] = -1;



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Building Memory: RAM8 From Registers

❖ RAM interface:
▪ address: address used to specify 

memory slot
▪ in: 16-bit input used to update 

specified memory slot if load is 1
▪ load: if 1, then in should be written 

to specified memory slot
▪ out: 16-bit output from the slot 

specified by address

❖ RAM8 can be built from 8 registers
▪ address width is log2(8) = 3 bits

19

RAM8

...

0

1

n-1

load

in

address

16

k

out

16
Register

Register

Register



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Building Memory: RAM8 From Registers

❖ Step 1: Route in to every register
▪ We don’t want to update every 

register, however
▪ Solution: choose which register to 

enable with address

❖ Step 2: Choose which register to 
use for the output

❖ When we think about making 
choices in hardware, we want to 
think about Mux and Dmux

20

RAM8

...

0

1

n-1

load

in

address

16

k

out

16
Register

Register

Register



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Building Memory: The rest of RAM

❖ After RAM8, can build larger RAM chips from a 
combination of smaller RAM chips
▪ For example, RAM64 can be built using eight RAM8 chips

❖ Technique is similar to RAM8 but will have to use 
different portions of the address

❖ The blocks section of the reading will be helpful
▪ For example, can think of each RAM8 as a block of RAM64

21



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Lecture Outline

❖ Cornell Note-Taking Review
▪ Group discussion: Compare and contrast notes

❖ Storing Data: Bit
▪ Bit overview and implementation

❖ Reading Review: Memory Representation
▪ Array abstraction, reading and writing memory

❖ Building Memory: Registers
▪ Building up from Bit to Register, then from Register to RAM

❖ Program Counter (PC) Overview
▪ How do we keep track of which instruction to execute?

22



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Program Counter (PC)

❖ Memory is used to store data as well as code

❖ Instructions and operations are stored at different 
addresses in memory

❖ Program Counter in the CPU keeps track of which address 
contains the instruction that should be executed next

23



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs 

the instruction at address 24 in the code segment

❖ Program counter specification:
if      (reset[t] == 1) out[t+1] = 0

else if (load[t] == 1)  out[t+1] = in[t]

else if (inc[t] == 1)   out[t+1] = out[t] + 1

else                    out[t+1] = out[t]

24

PC

load

in

16

out

16

inc reset



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Project 3 Overview

❖ Part I: Cornell Note-Taking Method
▪ Practice taking detailed notes in another class
▪ Think critically about the technique

❖ Part II: Memory
▪ Memory & Sequential Logic: Build our first sequential chips, from 

a 1-bit register to a 16K RAM module
▪ Program Counter: Build counter that tracks where we are in a 

program, with support for several operations we’ll need later
▪ Note: Folder split for performance reasons only

❖ Part III: Social Computing Reflection
▪ Applications of Memory and Sequential Logic

25



CSE 390B, Winter 2022L06: Memory, Cornell Notes

Post-Lecture 6 Reminders

❖ Reminders
▪ Project 1 grades and feedback released on Gradescope
▪ Project 2 due tonight (2/20) at 11:59PM PST
▪ Eric has office hours after lecture today from 3-4pm

❖ Starting next week, Eric’s office hours on Thursday from 
3-4pm will be on Wednesdays from 4:30-5:30pm

❖ What’s in store for Week 4?
▪ Technical Subject: Machine and Assembly Languages
▪ Metacognitive Subject: Annotation Strategies
▪ Project 4 (Machine Language, Annotation) released next Thursday

26


