
CSE 390B, Winter 2022L04: The ALU & Growth Mindset

CSE 390B, Winter 2022
Building Academic Success Through Bottom-Up Computing

The ALU, Growth vs.
Fixed Mindset

Growth vs. Fixed Mindset, Goal-setting, Multiplexer, ALU,
Project 2 Overview

If you can, please have your camera turned on!

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

❖ Growth vs. Fixed Mindset
▪ Setting SMART goals

❖ Reading Review and Q&A
▪ Negative Numbers in Binary

❖ If/Else Logic In Hardware
▪ Multiplexer (Mux) logical gate

❖ Arithmetic Logic Unit (ALU) Introduction
▪ ALU Functions and Implementation Strategy

❖ Project 2 Overview
▪ HDL Tips

Lecture Outline

2

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Growth vs. Fixed Mindset

3

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Setting SMART Goals

❖ S – Be specific, simple and significant.

❖ M – Make sure your goals are measurable. How many
times within a week, month, the quarter do you want to
do x goal?

❖ A – Make sure your goals are achievable. Is your goal
within your scope of control?

❖ R – Be realistic and reasonable.

❖ T – Be time-bound. When will you accomplish x goal?

4

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Breakout Rooms

5

SMART GOAL
FRAMEWORK

S -- Specific
M -- Measurable
A -- Achievable

R -- Realistic
T -- Timebound

Attending CSE 390B
office hours at least

5x this quarter
(or once every other week)

WINTER QUARTER
GOALS

What are skills, practices
or habits that are not

strengths YET?

SPHERE OF CONTROL

Getting a 4.0 in a course

VS.

Attending course
office hours

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

❖ Growth vs. Fixed Mindset
▪ Setting SMART goals

❖ Reading Review and Q&A
▪ Negative Numbers in Binary

❖ If/Else Logic In Hardware
▪ Multiplexer (Mux) logical gate

❖ Arithmetic Logic Unit (ALU) Introduction
▪ ALU Functions and Implementation Strategy

❖ Project 2 Overview
▪ HDL Tips

Lecture Outline

6

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Two’s Complement

❖ One binary interpretation to represent negative values

❖ Most significant bit (MSB) has a negative weight
▪ Add the remaining bits as usual (with positive weights)

❖ Example: 0b1101 in Two’s Complement
▪ –(1	× 23)	+	(1	× 22)	+	(0	× 21)	+	(1	× 20)	=	–8	+	4	+	0	+	1

=	–3

❖ Negation procedure: take bitwise complement and add one
▪ –x	=	~x	+	1
▪ Example: Negate x	=	4

7

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Two’s Complement

❖ One binary interpretation to represent negative values

❖ Most significant bit (MSB) has a negative weight
▪ Add the remaining bits as usual (with positive weights)

❖ Example: 0b1101 in Two’s Complement
▪ –(1	× 23)	+	(1	× 22)	+	(0	× 21)	+	(1	× 20)	=	–8	+	4	+	0	+	1

=	–3

❖ Negation procedure: take bitwise complement and add one
▪ –x	=	~x	+	1
▪ Example: Negate x	=	4
▪ –4	=	~0b0100	+	1	=	0b1011	+	0b1=	0b1100	=	–8	+	4	=	–4

8

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

4-bit Values in Various Representations

9

Binary	Value Unsigned	Binary Signed	Binary Two’s	Complement
0b0000 0 0 0
0b0001 1 1 1
0b0010 2 2 2
0b0011 3 3 3
0b0100 4 4 4
0b0101 5 5 5
0b0110 6 6 6
0b0111 7 7 7
0b1000 8 -0 -8
0b1001 9 -1 -7
0b1010 10 -2 -6
0b1011 11 -3 -5
0b1100 12 -4 -4
0b1101 13 -5 -3
0b1110 14 -6 -2
0b1111 15 -7 -1

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Two’s Complement Addition

❖ The process for adding binary in Two’s Complement is the
same as that of unsigned binary

❖ Hardware performs the exact same calculations
▪ It doesn’t need to know the sign of the values, it performs the

same calculation
▪ The only difference is representation of sum

❖ Example: 0b1001	+	0b0010
▪ Unsigned interpretation:
▪ Two’s Complement interpretation:

10

carry

a 1 0 0 1

b 0 0 1 0

sum

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Two’s Complement Addition

❖ The same process applies for unsigned and Two’s
Complement binary addition

❖ Hardware performs the exact same calculation
▪ It doesn’t need to know the sign of the values, it performs the

same calculation
▪ The only difference is representation of sum

❖ Example: 0b1001	+	0b0010	=	0b1011
▪ Unsigned interpretation: 9	+	2	=	11
▪ Two’s Complement interpretation: –7	+	2	=	–5

11

carry

a 1 0 0 1

b 0 0 1 0

sum 1 0 1 1

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Vote at https://pollev.com/cse390b

12

❖ You can choose to respond
anonymously by not adding
your name (click “Skip”)

❖ What is something you learned, were surprised by, or
had a question about from today’s reading?

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Vote at https://pollev.com/cse390b

13

❖ You can choose to respond
anonymously by not adding
your name (click “Skip”)

❖ How are you feeling about Project 1? Questions,
concerns, or other thoughts?

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

❖ Growth vs. Fixed Mindset
▪ Setting SMART goals

❖ Reading Review and Q&A
▪ Negative Numbers in Binary

❖ If/Else Logic In Hardware
▪ Multiplexer (Mux) logical gate

❖ Arithmetic Logic Unit (ALU) Introduction
▪ ALU Functions and Implementation Strategy

❖ Project 2 Overview
▪ HDL Tips

Lecture Outline

14

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

If/Else Decisions In Hardware

❖ We write if/else statements in Java with the
understanding that only one of the branches will run
▪ For example, in the following code, we expect to compute one

of a & b or a | b (not both)

15

if (c == 0) {
out = a & b;

} else {
out = a | b;

}

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

If/Else Decisions In Hardware

❖ In hardware, all circuits are always executing
▪ We can’t “turn off” a circuit based on a condition

❖ We create circuits for different conditions and choose
which output based on a condition instead

❖ We use Multiplexer (Mux) gates to choose which singular
input to output

16

Mux
a

b

sel

out

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Mux Gate Implementation Example

17

❖ Example of converting pseudocode into a hardware circuit
diagram:

if (c == 0) {
out = a & b;

} else {
out = a | b;

}

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Mux Gate Implementation Example

18

❖ Example of converting pseudocode into a hardware circuit
diagram:

if (c == 0) {
out = a & b;

} else {
out = a | b;

}

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Mux Gate Practice Problem #1

❖ Draw out the hardware circuit diagram that corresponds
to the following pseudocode:

19

if (c == 0) {
out = ~a | ~b;

} else {
out = a | b;

}

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Mux Gate Practice Problem #1

❖ Draw out the hardware circuit diagram that corresponds
to the following pseudocode:

20

if (c == 0) {
out = ~a | ~b;

} else {
out = a | b;

}

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Mux Gate Practice Problem #2

❖ Draw out the hardware circuit diagram that corresponds
to the following pseudocode:

21

if (a == b) {
out = a & b;

} else {
out = a | b;

}

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Mux Gate Practice Problem #2

❖ Draw out the hardware circuit diagram that corresponds
to the following pseudocode:

22

if (a == b) {
out = a & b;

} else {
out = a | b;

}

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

❖ Growth vs. Fixed Mindset
▪ Setting SMART goals

❖ Reading Review and Q&A
▪ Negative Numbers in Binary

❖ If/Else Logic In Hardware
▪ Multiplexer (Mux) logical gate

❖ Arithmetic Logic Unit (ALU) Introduction
▪ ALU Functions and Implementation Strategy

❖ Project 2 Overview
▪ HDL Tips

Lecture Outline

23

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

The Von Neumann Architecture

24

COMPUTER

MEMORY

(This picture will get more detailed as we go!)

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

❖ Computes a function on two inputs to
produce an output

❖ Input Control Bits specific which
function should be computed
▪ Supports a combination of logical (And, Or)

and arithmetic operations (+,	–)

❖ Indicate properties of the result with
Output Control Bits (commonly called
Flags)

The Arithmetic Logic Unit

25

Input
Control Bits

Output
Control Bits

(Flags)

Output

Input A

Input B

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Our ALU Implementation

❖ Inputs & Output
▪ 16-bit inputs x and y and output out
▪ Interpret in Two’s Complement

❖ Input Control Bits
▪ 6 control bits (zx, nx, zy, ny, f, no)

specify which function to compute
▪ 26 = 64 different possible functions to

choose from (only 18 of interest)

❖ Output Control Bits (Flags)
▪ 2 bits (zr and ng) describing the

properties of the output

26

x

y

out

16

16

16

zx
nx

zy
ny

f no

zr
ng

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

ALU Functions: “Black Box” View

❖ We support 18 different functions
of interest
▪ 3 that simply give constant values

(ignoring operands)
▪ 10 that change a single input, possibly

with a constant
▪ 5 that perform an operation using

both inputs

❖ To select a function, set the
control bits to the corresponding
combination

27

zx nx zy ny f no out

1 0 1 0 1 0 0

1 1 1 1 1 1 1

1 1 1 0 1 0 -1

0 0 1 1 0 0 x

1 1 0 0 0 0 y

0 0 1 1 0 1 !x

1 1 0 0 0 1 !y

0 0 1 1 1 1 -x

1 1 0 0 1 1 -y

0 1 1 1 1 1 x+1

1 1 0 1 1 1 y+1

0 0 1 1 1 0 x-1

1 1 0 0 1 0 y-1

0 0 0 0 1 0 x+y

0 1 0 0 1 1 x-y

0 0 0 1 1 1 y-x

0 0 0 0 0 0 x&y

0 1 0 1 0 1 x|y

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

❖ Example: Compute x - 1
▪ Given inputs x=0101 (5), y=0010 (2)

ALU Functions: Implementer’s View

28

if zx,
set x to 0

if zy,
set y to 0

if nx,
negate x

if f, result is x + y
else, result is x & y

if no,
negate result

out

...

x-1

...

zx nx zy ny f no

...

0 0 1 1 1 0

...

1
PREPROCESS

INPUTS

2
COMPUTE

3
POSTPROCESS

OUTPUT

if ny,
negate y

x=0101 (5)
Unchanged

y=0000 (0)
Zeroed

x=0101 (5)
Unchanged

y=1111 (-1)
Negated

out=0100 (4)
x (5) + y (-1)

out=0100 (4)
Unchanged

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Vote at https://pollev.com/cse390b

❖ Given inputs x=0b1010 and y=0b0110 and the
following input control bits, what is the resulting output
and output control bits?

29

A. !out=0b1010, zr=0, ng=1
B. !out=0b0111, zr=0, ng=0
C. !out=0b1001, zr=1, ng=0
D. !out=0b1100, zr=1, ng=1
E. !We’re lost…

zx nx zy ny f no

...

0 1 1 1 0 1

...

IN
x[16], y[16], // 16-bit inputs
zx, // zero the x input?
nx, // negate the x input?
zy, // zero the y input?
ny, // negate the y input?
f, // compute out = x + y

if 1 or x & y (if 0)
no; // negate the out output?

OUT
out[16], // 16-bit output
zr, // 1 if (out == 0),

0 otherwise
ng; // 1 if (out < 0),

0 otherwise

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

ALU Output Control Bits

❖ zr is 1 if out == 0
❖ ng is 1 if out < 0

❖ We’ll use these in a later project
▪ The basis of comparison
▪ To evaluate if x == 4, compute x — 4

and check zr flag

❖ These are deceptively difficult to
implement
▪ Start early on Project 2

30

x

y

out

16

16

16

zx
nx

zy
ny

f no

zr
ng

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

ALU Implementation Strategy

❖ We suggest implement the ALU in three steps

❖ First, handle zeroing out and negating inputs x and y and
negating the output
▪ Ignore the f bit (only compute And) and ignore flag outputs
▪ Test your implementation using ALU-nostat-noadd.tst

❖ Next, implement the And and Add operations using f
▪ Test your implementation using ALU-nostat.tst

❖ Lastly, implement the logic for the status flags (zr and ng)
▪ Test your full ALU using ALU.tst

31

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

❖ Growth vs. Fixed Mindset
▪ Setting SMART goals

❖ Reading Review and Q&A
▪ Negative Numbers in Binary

❖ If/Else Logic In Hardware
▪ Multiplexer (Mux) logical gate

❖ Arithmetic Logic Unit (ALU) Introduction
▪ ALU Functions and Implementation Strategy

❖ Project 2 Overview
▪ HDL Tips

Lecture Outline

32

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Project 2 Overview

❖ Part I: 24-Hour Time Audit

❖ Part II: Boolean Arithmetic
▪ Goal: Implement the ALU, which performs the core computations

we need (+ and &)
▪ First, implement HalfAdder.hdl, FullAdder.hdl, and
Add16.hdl

▪ Then, implement the ALU in the order suggested by the specification
▪ Chapter 2 of the textbook has more details on the adders and ALU

❖ Part III: Social Computing Reflection
▪ Application of Boolean Arithmetic: Buffer Overflow

33

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

HDL Tips: Slicing

❖ Sometimes want to connect only part of a multi-bit bus
❖ HDL lets us with slicing notation
❖ Example: ChipA has eight output pins, and we want to

connect the first four to ChipB’s four inputs:

❖ Note: We can only slice chip connections, not internal
wires (e.g., w1[0..3] is not allowed)
▪ If we need to use half an 8-bit wire, make two 4-bit wires and slice

the output they’re connected to
34

ChipA
ChipB ChipA (out[0..3]=w1);

ChipB (in=w1);

w1 (4)

out
(8)

in
(4)

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

HDL Tips: Connections

❖ Can connect a chip output multiple times, or not at all!
▪ Hint: In Add16.hdl, do we need to use the last carry bit?

35

ChipA
ChipB

ChipA (out[0..3]=w1,
out[2..5]=w2,
out[5]=w3);

ChipB (in=w1);
ChipB (in=w2);
ChipC (in=w3);

w1 (4)

out
(8)

in
(4)

ChipB

ChipC

in
(4)

in
(1)

w2 (4)

w3 (1)

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

HDL Tips: Constants

❖ A bus of true or false contain all 1s or all 0s, respectively,
and implicitly act as whatever width is needed

❖ Example: ChipB has four inputs and ChipC has one input
▪ ChipB (in=true) assigns all 4 inputs the value of 1 (true)
▪ ChipC (in=true) assigns the one input the value of 1 (true)
▪ ChipC (in=false) assigns the one input the value of 0 (false)

36

ChipB (in=true);
ChipC (in=true);
ChipC (in=false);

ChipB

true (4)

in
(4)

ChipCin
(1)

ChipCin
(1)

true (1)

false (1)

Fountain of
endless 1s

Bottomless
serving of 0s

CSE 390B, Winter 2022L04: The ALU & Growth Mindset

Post-Lecture 4 Reminders

❖ What’s in store for Week 3?
▪ Technical Subject: Sequential Logic & Building Memory
▪ Metacognitive Subject: Note-taking Practices
▪ Project 3 released next Thursday (1/20)

❖ Reminders
▪ Project 1 due tonight (Thursday, 1/13) 11:59PM PST
▪ Project 2 (Boolean Arithmetic and 24-Hour Time Audit) is released
▪ Join the Discord channel!

37

