## CSE 390B, Winter 2022

Building Academic Success Through Bottom-Up Computing

## Boolean Arithmetic, <br> Time Management

Time Management, Boolean Arithmetic, Adding Binary Numbers, Project 2 Overview

## Lecture Outline

* Connect with your CSE 390B peers
* Introduction to Time Management
- Weekly Time Commitments
* Reading Review and Q\&A
- Boolean Arithmetic
* Circuits For Adding Binary Numbers
- Half Adder, Full Adder


## Connecting With Your Peers

* Download Discord from https://discord.com/download
* Log in or create an account
* Click on + icon in left-most column to create channel
- Select "Create My Own"
- Select "For me and my friends"
- Give your server a name! (e.g., "CSE 390B")
* Use the Invite People button to invite peers!
* Create some text and voice channels! Ideas:
- Text: \#projects, \#questions, \#chill, \#off-topic
- Voice: Study Room, Lounge
* Feel free to connect via Slack, Messenger, etc. too!


## Lecture Outline

* Connect with your CSE 390B peers
* Introduction to Time Management
- Weekly Time Commitments
* Reading Review and Q\&A
- Boolean Arithmetic
* Circuits For Adding Binary Numbers
- Half Adder, Full Adder


## Introduction to Time Management



## One of your most precious resources is your time.

## WHAT TYPICALLY FILLS UP YOUR TIME DURING THE QUARTER?

CLASS LECTURES \& QUIZ SECTIONS

FAMILY
COMMITMENTS
COMMUTING
ADMINISTRATIVE WORK

OFFICE HOURS

HOME CHORES

STUDYING

EXTRACURRICULAR INVOLVEMENT

FRIENDS/PARTNERS

## Weekly Time Commitments

## Weekly Time Commitments

| Time | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7:30 AM |  |  |  |  |  |  |  |
| 8:00 AM |  |  |  |  |  |  |  |
| 8:30 AM |  |  |  |  |  |  |  |
| 9:00 AM |  |  |  |  |  |  |  |
| 9:30 AM |  |  |  |  |  |  |  |
| 10:00 AM |  |  |  |  |  |  |  |
| 10:30 AM |  |  |  |  |  |  |  |
| 11:00 AM |  |  |  |  |  |  |  |
| 11:30 AM |  |  |  |  |  |  |  |
| 12:00 PM |  |  |  |  |  |  |  |
| 12:30 PM |  |  |  |  |  |  |  |
| 1:00 PM |  |  |  |  |  |  |  |
| 1:30 PM |  |  |  |  |  |  |  |
| 2:00 PM |  |  |  |  |  |  |  |
| 2:30 PM |  |  |  |  |  |  |  |
| 3:00 PM |  |  |  |  |  |  |  |
| 3:30 PM |  |  |  |  |  |  |  |
| 4:00 PM |  |  |  |  |  |  |  |
| 4:30 PM |  |  |  |  |  |  |  |
| 5:00 PM |  |  |  |  |  |  |  |
| 5:30 PM |  |  |  |  |  |  |  |
| 6:00 PM |  |  |  |  |  |  |  |
| 6:30 PM |  |  |  |  |  |  |  |
| 7:00 PM |  |  |  |  |  |  |  |
| 7:30 PM |  |  |  |  |  |  |  |
| 8:00 PM |  |  |  |  |  |  |  |
| 8:30 PM |  |  |  |  |  |  |  |
| 9:00 PM |  |  |  |  |  |  |  |
| 9:30 PM |  |  |  |  |  |  |  |
| 10:00 PM |  |  |  |  |  |  |  |
| 10:30 PM |  |  |  |  |  |  |  |
| 11:00 PM |  |  |  |  |  |  |  |
| 11:30 PM |  |  |  |  |  |  |  |

## Weekly Time Commitments

* Class meeting times and quiz sections
* Family, friends, community, extracurricular commitments
* Meals!
* Physical and Mental Activities
* Studying for each of your classes
- The \# of credits for a course reflects the \# of hours the class meets
- In general, courses require 2 hours of homework for every 1 hour of class
*What else is not reflected given your specific situation?


## Lecture Outline

* Connect with your CSE 390B peers
* Introduction to Time Management
- Weekly Time Commitments
* Reading Review and Q\&A
- Boolean Arithmetic
* Circuits For Adding Binary Numbers
- Half Adder, Full Adder


## What is Binary?

* A base-n number system is a system of number representation with n symbols
* Decimal system is a base-10 number system
- Base-10 symbols: $0,1,2,3,4,5,6,7,8,9$
- Increase a number by moving to the next greatest symbol
- Add another digit when we run out of symbols

Binary is a base-2 number system
" Often prefixed with 0b (e.g., 0b1101, 0b10)

- Base-2 symbols: 0,1


## Representing Numbers in Binary

| Binary | Decimal |
| :---: | :---: |
| $0 b 0$ | 0 |
| $0 b 1$ | 1 |
| $0 b 10$ | 2 |
| $0 b 11$ | 3 |
| $0 b 100$ | 4 |
| $0 b 101$ | 5 |
| $0 b 110$ | 6 |
| $0 b 111$ | 7 |
| $\cdots$ | $\ldots$ |

## Representing Numbers in Base-2

* Binary numbers are identical, except in base-2
- Describe a value by specifying multiples of powers of 2
- For example, a breakdown of 0b1101 in binary (13 in decimal)

| Binary | Power of 2 | Decimal |
| ---: | :---: | :---: |
| 0b1000 | $1 \times 2^{3}$ | 8 |
| 0b100 | $1 \times 2^{2}$ | 4 |
| $0 b 00$ | $0 \times 2^{1}$ | 0 |
| $0 b 1$ | $1 \times 2^{0}$ | 1 |

## Addition

* How do we add two binary numbers?
- As humans, could convert to decimal and then back

Example: 0b0101 + 0b0010

- First convert 0b0101 to decimal (result is 5)
- Next convert 0b0010 to decimal (result is 2 )
- Add the decimal numbers and convert back to binary
- $2+5=7$, which is 0 b111 in binary
* What's more useful is understanding the rules of binary addition so we can teach them to a computer


## Case Study: Decimal Addition

* Consider how we perform decimal addition
- Right to left (least significant place to most significant place)
- When a result is more than one digit, carry the "overflow"



## Binary Addition

* Binary addition is conceptually the same as decimal addition
- Right to left (least significant place to most significant place)
- When a result is more than one digit, carry the "overflow"



## Overflow

*What if there's a carry bit in the last column?


## Overflow

*What if there's a carry bit in the last column?

* We can't represent it in our fixed-width numbers
- We are going to "drop" or ignore the extra carry bit

| carry |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a |  | 0 | 1 | 1 | 0 |
| b |  | 1 | 0 | 1 | 0 |
| sum |  |  |  |  |  |

## (II) Poll Everywhere

* What is something you learned, were surprised by, or had a question about from today's reading?
*What general questions, comments, concerns, or feedback do you have for the course staff from Week 1?
* You can choose to respond anonymously by not adding your name (click "Skip")

Welcome to cse390b's presentation!

Introduce yourself
Enter the screen name you would like to appear alongside your responses.


* Assuming we are fixing the width of our numbers to be four bits, what is the result of adding $0 b 1011$ and 0b0110 in binary?
A. 0b1101
B. $0 b 0001$
C. 0 b10001
D. $0 b 0111$
E. We're lost...


## Lecture Outline

* Connect with your CSE 390B peers
* Introduction to Time Management
- Weekly Time Commitments
* Reading Review and Q\&A
- Boolean Arithmetic
* Circuits For Adding Binary Numbers
- Half Adder, Full Adder


## Roadmap: Boolean Arithmetic

* Addition Implement
* Subtraction Get it for free!
* Comparison $(<,>,==,!=) \quad$ Get it for free!
* Multiplication

Postpone to software

* Division

Postpone to software

## Half Adder

* Circuit for adding two bits together
* Takes in two inputs: $\mathrm{a}, \mathrm{b}$
- a is the first bit being added
- b is the corresponding bit to be added
* Produces two outputs: sum, carry
- sum is the value to be put for this column in the result
- carry is the value to be carried over to the next column


| carry |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| a | 0 | 1 | 1 | 0 |
| b | 1 | 0 | 1 | 0 |
| sum |  |  |  |  |

/**

* Computes the sum of 2 bits */

CHIP HalfAdder \{
IN a, b;
OUT sum, carry;
PARTS:
// Put your code here:

## Half Adder

* Example: 0b0111 + 0b0101
*. For the first (least significant) column:
- $\mathrm{a}=1$
- $b=1$
- sum =
- carry =



## Half Adder Group Work

* Determine the half adder logical Boolean expression
- First, fill in the truth table values for sum and carry based on the inputs
- Then, develop a Boolean expression for sum and carry based on the truth table
* Five-minute breakout rooms, identify one person to share each of the following after coming back:
- Overview of what the half adder does
- Thought process for reaching the Boolean expression for sum
- Thought process for reaching the Boolean expression for carry


## Half Adder Group Work

* Boolean expressions:
- sum =
- carry =

| $\mathbf{a}$ | $\mathbf{b}$ | sum | carry |
| :---: | :---: | :---: | :---: |
| 0 | 0 |  |  |
| 0 | 1 |  |  |
| 1 | 0 |  |  |
| 1 | 1 |  |  |

## Half Adder Group Work

* Boolean expressions:
- sum = a XOR b
- carry = a AND b

| $\mathbf{a}$ | $\mathbf{b}$ | sum | carry |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

## Full Adder



* Circuit for adding three bits together (two bits and carry bit together from previous column)
- a is the first bit being added
- b is the corresponding bit to be added
- c is the carry bit from the right column

| carry |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| a | 0 | 1 | 1 | 0 |
| b | 1 | 0 | 1 | 0 |
| sum |  |  |  |  |

* Produces two outputs: sum, carry
- sum is the value to be put for this column in the result
- carry is the value to be carried over to the next column
* Computes the sum of 3 bits */

CHIP FullAdder \{
IN a, b, c;
OUT sum, carry;
PARTS:
// Put your code here:

## Full Adder

* Example: 0b111 + 0b101
* For the second (second least significant) column:
- $\mathrm{a}=1$
- $\mathrm{b}=0$
- c=1
- sum =
- carry =



## Full Adder Truth Table

| $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | sum | carry |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 1 | 0 |  |  |
| 0 | 1 | 1 |  |  |
| 1 | 0 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 1 | 1 |  |  |

## (11) Poll Everywhere

* What are the sum and carry bits when $a=0, b=1$, and
$\mathrm{c}=1$ ?
A. sum $=0$, carry $=0$
B. $\operatorname{sum}=0$, carry $=1$
C. $\operatorname{sum}=1$, carry $=0$
D. sum=1, carry=1
E. We're lost...

| $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | sum | carry |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | $?$ | $?$ |
| 1 | 0 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 1 | 1 |  |  |

## Full Adder Truth Table

| $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | sum | carry |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

## (II) Poll Everywhere

* Now that we have a truth table for a full adder, how would we go about determining the Boolean algebra expressions for sum and carry?

| $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | sum | carry |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

## Multi-Bit Adder

* Adds two 16-bit numbers
* Connects the full adders for each column together (wires the out carry from one column to the in carry of the next)

```
/**
    * Adds two 16-bit two's complement
    * values. Overflow is ignored.
    */
CHIP Add16 {
    IN a[16], b[16];
    OUT sum[16];
PARTS:
// Put your code here:
```



## Lecture 3 Reminders

* Virtual through the end of Week 2
* 1:1 Student-TA Meetings
- 1 hour for first meeting, 45 minutes going forward
* Office Hours: Zoom links available via Canvas
- Eric: Tuesdays and Thursdays, 3-4:00pm at CSE2 152
- Leslie: Wednesdays, 4:30-5pm at CSE2 174
- Audrey and Sean: Wednesdays, 1:30-2:30pm at CSE2 152
* Project 1: Boolean Logic \& Study Skills Inventory
- Due on Thursday (1/13) at 11:59PM PST

