CSE 390B, Winter 2022 **Building Academic Success Through Bottom-Up Computing Boolean Arithmetic, Time Management**

Time Management, Boolean Arithmetic, Adding Binary Numbers, Project 2 Overview

If you can, please have your camera turned on!

W UNIVERSITY of WASHINGTON

Lecture Outline

- Connect with your CSE 390B peers
- Introduction to Time Management
 - Weekly Time Commitments
- Reading Review and Q&A
 - Boolean Arithmetic
- Circuits For Adding Binary Numbers
 - Half Adder, Full Adder

Connecting With Your Peers

- Download Discord from https://discord.com/download
- Log in or create an account
- Click on to in left-most column to create channel
 - Select "Create My Own"
 - Select "For me and my friends"
 - Give your server a name! (e.g., "CSE 390B")

Use the Invite People button to invite peers!

- Create some text and voice channels! Ideas:
 - Text: #projects, #questions, #chill, #off-topic
 - Voice: Study Room, Study Room
- Feel free to connect via Slack, Messenger, etc. too!

Lecture Outline

- Connect with your CSE 390B peers
- Introduction to Time Management
 - Weekly Time Commitments
- Reading Review and Q&A
 - Boolean Arithmetic
- Circuits For Adding Binary Numbers
 - Half Adder, Full Adder

Introduction to Time Management

One of your most precious resources is your time.

WHAT TYPICALLY FILLS UP YOUR TIME DURING THE QUARTER?

CLASS LECTURES & QUIZ SECTIONS	WORKING	STUDYING
FAMILY COMMITMENTS	OFFICE HOURS	EXTRACURRICULAR INVOLVEMENT
COMMUTING	HOME CHORES	FRIENDS/PARTNERS
ADMINISTRATIVE WORK	PHYSICAL /MENTAL ACTIVITIES	MORE!

Weekly Time Commitments

Weekly Time Commitments

Time	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
7:30 AM							
8:00 AM							
8:30 AM							
9:00 AM							
9:30 AM							
10:00 AM							
10:30 AM							
11:00 AM							
11:30 AM							
12:00 PM							
12:30 PM							
1:00 PM							
1:30 PM							
2:00 PM							
2:30 PM							
3:00 PM							
3:30 PM							
4:00 PM							
4:30 PM							
5:00 PM							
5:30 PM							
6:00 PM							
6:30 PM							
7:00 PM							
7:30 PM							
8:00 PM							
8:30 PM							
9:00 PM							
9:30 PM							
10:00 PM							
10:30 PM							
11:00 PM							
11:30 PM							

Weekly Time Commitments

- Class meeting times and quiz sections
- Family, friends, community, extracurricular commitments
- Meals!
- Physical and Mental Activities
- Studying for <u>each</u> of your classes
 - The # of credits for a course reflects the # of hours the class meets
 - In general, courses require 2 hours of homework for every 1 hour of class
- What else is not reflected given your specific situation?

Lecture Outline

- Connect with your CSE 390B peers
- Introduction to Time Management
 - Weekly Time Commitments
- Reading Review and Q&A
 - Boolean Arithmetic
- Circuits For Adding Binary Numbers
 - Half Adder, Full Adder

What is Binary?

- A base-n number system is a system of number representation with n symbols
- Decimal system is a base-10 number system
 - Base-10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Increase a number by moving to the next greatest symbol
 - Add another digit when we run out of symbols
- Binary is a base-2 number system
 - Often prefixed with 0b (e.g., 0b1101, 0b10)
 - Base-2 symbols: 0, 1

Representing Numbers in Binary

Binary	Decimal
0b0	0
0b1	1
0b10	2
0b11	3
0b100	4
0b101	5
0b110	6
0b111	7

Representing Numbers in Base-2

Binary numbers are identical, except in base-2

- Describe a value by specifying multiples of powers of 2
- For example, a breakdown of 0b1101 in binary (13 in decimal)

Binary	Power of 2	Decimal
0b1000	1×2^{3}	8
0b100	1×2^{2}	4
0b00	0×2^1	0
0b1	1×2^{0}	1

Addition

- How do we add two binary numbers?
 - As humans, could convert to decimal and then back
- Example: 0b0101 + 0b0010
 - First convert 0b0101 to decimal (result is 5)
 - Next convert 0b0010 to decimal (result is 2)
 - Add the decimal numbers and convert back to binary
 - 2 + 5 = 7, which is 0b111 in binary
- What's more useful is understanding the rules of binary addition so we can teach them to a computer

Case Study: Decimal Addition

Consider how we perform decimal addition

- Right to left (least significant place to most significant place)
- When a result is more than one digit, carry the "overflow"

Binary Addition

- Binary addition is conceptually the same as decimal addition
 - Right to left (least significant place to most significant place)
 - When a result is more than one digit, carry the "overflow"

Overflow

What if there's a carry bit in the last column?

Overflow

- What if there's a carry bit in the last column?
- We can't represent it in our fixed-width numbers
 - We are going to "drop" or ignore the extra carry bit

Vote at https://pollev.com/cse390b

- What is something you learned, were surprised by, or had a question about from today's reading?
- What general questions, comments, concerns, or feedback do you have for the course staff from Week 1?
- You can choose to respond anonymously by not adding your name (click "Skip")

Vote at https://pollev.com/cse390b

- Assuming we are fixing the width of our numbers to be four bits, what is the result of adding 0b1011 and 0b0110 in binary?
 - **A.** 0b1101
 - **B.** 0b0001
 - **C.** 0b10001
 - **D.** 0b0111
 - E. We're lost...

Lecture Outline

- Connect with your CSE 390B peers
- Introduction to Time Management
 - Weekly Time Commitments
- Reading Review and Q&A
 - Boolean Arithmetic

Circuits For Adding Binary Numbers

Half Adder, Full Adder

Roadmap: Boolean Arithmetic

- Subtraction Get it for free!
- Comparison (<, >, ==, !=) Get it for free!
- Multiplication
 Postpone to software
- Division
 Postpone to software

Half Adder

b

Half Adder

- Takes in two inputs: a, b
 - a is the first bit being added
 - is the corresponding bit to be added b
- Produces two outputs: sum, carry
 - sum is the value to be put for this column in the result
 - carry is the value to be carried over to the next column


```
/**
```

```
*
 Computes the sum of 2 bits
*/
```

```
CHIP HalfAdder {
    IN a, b;
    OUT sum, carry;
```

PARTS: // Put your code here:

}

Half Adder

- ✤ Example: 0b0111 + 0b0101
- For the first (least significant) column:
 - a = 1

- b = 1
- sum =carry =

Half Adder Group Work

Determine the half adder logical Boolean expression

- First, fill in the truth table values for sum and carry based on the inputs
- Then, develop a Boolean expression for sum and carry based on the truth table
- Five-minute breakout rooms, identify one person to share each of the following after coming back:
 - Overview of what the half adder does
 - Thought process for reaching the Boolean expression for sum
 - Thought process for reaching the Boolean expression for carry

Half Adder Group Work

- Boolean expressions:
 - sum =
 - carry =

a	b	sum	carry
0	0		
0	1		
1	0		
1	1		

Half Adder Group Work

Boolean expressions:

- sum = a XOR b
- carry = a AND b

а	b	sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder

- Circuit for adding three bits together (two bits *and* carry bit together from previous column)
 - a is the first bit being added
 - b is the corresponding bit to be added
 - c is the carry bit from the right column
- Produces two outputs: sum, carry
 - sum is the value to be put for this column in the result
 - carry is the value to be carried over to the next column

carry				
а	0	1	1	0
b	1	0	1	0
sum				

```
/**
```

}

```
* Computes the sum of 3 bits
*/
```

```
CHIP FullAdder {
    IN a, b, c;
    OUT sum, carry;
```

PARTS:
// Put your code here:

Full Adder

- ✤ Example: 0b111 + 0b101
- For the second (second least significant) column:
 - a = 1

Full Adder Truth Table

а	b	С	sum	carry
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Vote at https://pollev.com/cse390b

- What are the sum and carry bits when a=0, b=1, and c=1?
 - A. sum=0, carry=0
 - **B.** sum=0, carry=1
 - **C.** sum=1, carry=0
 - **D.** sum=1, carry=1
 - E. We're lost...

а	b	С	sum	carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	?	?
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Full Adder Truth Table

а	b	С	sum	carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Vote at https://pollev.com/cse390b

Now that we have a truth table for a full adder, how would we go about determining the Boolean algebra expressions for sum and carry?

а	b	С	sum	carry	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

sum = carry =

}

Multi-Bit Adder

- Adds two 16-bit numbers
- Connects the full adders for each column together (wires the out carry from one column to the in carry of the next)

```
/**
 * Adds two 16-bit two's complement
 * values. Overflow is ignored.
 */
CHIP Add16 {
 IN a[16], b[16];
 OUT sum[16];
PARTS:
 // Put your code here:
```


Lecture 3 Reminders

- Virtual through the end of Week 2
- 1:1 Student-TA Meetings
 - 1 hour for first meeting, 45 minutes going forward
- Office Hours: Zoom links available via Canvas
 - <u>Eric:</u> Tuesdays and Thursdays, 3-4:00pm at CSE2 152
 - Leslie: Wednesdays, 4:30-5pm at CSE2 174
 - <u>Audrey and Sean</u>: Wednesdays, 1:30-2:30pm at CSE2 152
- Project 1: Boolean Logic & Study Skills Inventory
 - Due on Thursday (1/13) at 11:59PM PST