
Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

CSE 390B, Spring 2022
Building Academic Success Through Bottom-Up Computing

Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Assembler & Compilers 
Overview

Inside the Assembler, The Software Stack, Compilers 
Overview, Project 6 Tips



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Lecture Outline

❖ Inside the Assembler
▪ Producing Machine Code
▪ Parsing, Symbols, Encoding

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Compilers Overview
▪ Roadmap of Hardware and Software Components

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

2



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Producing Machine Code

3

MEM CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100) 
{
sum += arr[i];
i++;

}
Java

movq $5, %rdx
addq %rsx, %rdx
movq %rdx, %rax
ret

Assembly Language

Load & Execute

Compile

Assemble



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

The Assembler’s Job

4

D=D+1
Assemble

1 1 1 0 1 1 1 1 1 0 1 0 0 0 0

D nullD+1

1  1  1 a  c  c  c  c  c  c d  d  d  j  j  j

Family:
0 = A-Instruction
1 = C-Instruction

Dest:
Where to store 
result

Jump:
Condition for 
jumping

Comp:
ALU Operation (a bit chooses 
between A and M)

Unused

0 v  v  v  v  v  v  v  v  v  v  v  v  v  v  v

Value:
A 15-bit unsigned value to load 
into A register



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

❖ Look up each value in the corresponding table

The Assembler’s Job

5

D=D+1
Assemble

1 1 1 0 1 1 1 1 1 0 1 0 0 0 0

D nullD+1



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

6

@12

D=A

@i

M=D  // init

(LOOP)

@R3

MD = M-1

@LOOP

D;JGT

Assemble

0000000000001100

1110110000010000

0000000000010000

1110001100001000

0000000000000011

1111110010011000

0000000000000100

1110001100000001

1

2

3

4

5

6

7

8

9

Line #

0

1

2

3

4

5

6

7

Address

What Makes the Assembler’s Job Difficult?



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Difficulties for the Assembler

❖ Three broad concerns:

7

Parsing
Recognizing type of each instruction and label, 
extracting relevant fields, skipping whitespace & 
comments

Symbols

Mapping from labels to instruction addresses, mapping 
from code symbols to RAM addresses, creating new 
symbols, corresponding line numbers to instruction 
addresses

Encoding Converting relevant fields to binary values, converting 
symbol values to binary values



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Bells and Whistles… Why Bother?

❖ Tradeoff: Adding convenience for programmer makes it 
harder to build the Assembler
▪ E.g., removing symbols from Hack would make Assembler much 

simpler, still possible to write all the same programs
▪ But language would be far more annoying to use

8



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Bells and Whistles… Why Bother?

❖ Tradeoff: Adding convenience for programmer makes it 
harder to build the Assembler
▪ E.g., removing symbols from Hack would make Assembler much 

simpler, still possible to write all the same programs
▪ But language would be far more annoying to use

❖ Don’t underestimate the importance of convenience
▪ Put another way: Adding these extra features makes 

programmers more productive

9



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Parsing

❖ Source code is just a giant string: we need to go 
character-by-character to understand that string

❖ Parser presents iterator-like interface:
▪ To “advance” one instruction: 

• Move cursor forward, skipping whitespace and comments, until next 
non-empty line (ending on a newline)

▪ To “read” current instruction: 
• Throw away whitespace & comments
• Determine what type of instruction
• Pull relevant fields out

10



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Symbols: Labels

❖ Keep symbol table, mapping symbols (strings) to their 
values (integers)
▪ Initialize with built-in symbols

11

SYMBOL VALUE

R0 0

R1 1

... ...

R15 15

SCREEN 16384

KBD 24576



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Symbols: Labels

❖ Keep symbol table, mapping symbols (strings) to their 
values (integers)
▪ Initialize with built-in symbols

❖ Run through instructions, using this
pseudocode:

12

SYMBOL VALUE

R0 0

R1 1

... ...

R15 15

SCREEN 16384

KBD 24576

If current line is (LABEL):
Add LABEL → next line number to 
symbol table

If current line is @LABEL:
Lookup LABEL in symbol table, 
insert value into A instruction



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Symbols: Labels

❖ Problem: what if a label’s use comes before its definition?

13

@LOOP

0;JMP

D=M

(LOOP)

@var

1

2

3

4

5

Line #



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Symbols: Labels

❖ Problem: what if a label’s use comes before its definition?

❖ Solution: Two passes
▪ Pass 1: Populate symbol table by moving through file and ignoring 

anything that isn’t a (LABEL) line
▪ Pass 2: Go through file again, ignoring

(LABEL) lines, encoding C-instructions, and
encoding A-instructions according to
symbol table lookup

14

@LOOP

0;JMP

D=M

(LOOP)

@var

1

2

3

4

5

Line #



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Lecture Outline

❖ Inside the Assembler
▪ Producing Machine Code
▪ Parsing, Symbols, Encoding

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Compilers Overview
▪ Roadmap of Hardware and Software Components

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

15



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Roadmap

16

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Roadmap

17

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Roadmap

18

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Roadmap

19

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Focus for the rest of 
the course



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly 
Language

Machine Code

Windows
macOS

Unix/Linux
Android
Hack OS

Operating 
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level 
Language

Intermediate 
Language(s)

Compiler

Compiler

(VM Translator)



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Lecture Outline

❖ Inside the Assembler
▪ Producing Machine Code
▪ Parsing, Symbols, Encoding

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Compilers Overview
▪ Roadmap of Hardware and Software Components

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

21



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Roadmap

22

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Focus for the rest of 
the course



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly 
Language

Machine Code

Windows
Mac

Unix/Linux
Android
Hack OS

Operating 
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level 
Language

Intermediate 
Language(s)

Compiler

Compiler

(VM Translator)



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly 
Language

Machine Code

Windows
Mac

Unix/Linux
Android
Hack OS

Operating 
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level 
Language

Intermediate 
Language(s)

Compiler

Compiler

(VM Translator)
(Project 7)

Compiler



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

The Compiler: Goal

25

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

The Compiler: Goal

26

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler

Theory Definition: a string, from the set 
of strings making up a language



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

The Compiler: Goal

27

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler

Theory Definition: a string, from the set 
of strings making up a language

Practical Definition: a file containing a 
bunch of characters



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

The Compiler: Implementation

28

Scanner Parser Type 
Checker Optimizer Code 

Generator

Break string into 
discrete tokens:

etc.

IF (

==

ID(n)

NUM(0)

Verify the 
syntax tree is 
semantically 
correct

Rearrange the 
code to be 
more efficient 

Convert the syntax 
tree to the target 
language

Arrange tokens into 
syntax tree:

+

x 10

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Lecture Outline

❖ Inside the Assembler
▪ Producing Machine Code
▪ Parsing, Symbols, Encoding

❖ The Software Stack
▪ Roadmap of Hardware and Software Components

❖ Compilers Overview
▪ Roadmap of Hardware and Software Components

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

29



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 1: What do we pay attention to?
▪ writeM is related to whether we write to memory or not
▪ We need to look up the destination bits specification from 

Chapter 4

30



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 2: Determine logic for specification
▪ Read the “Destination Specification” section of Chapter 4
▪ Instruction bits:
1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

31



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 2: Determine logic for specification
▪ Read the “Destination Specification” section of Chapter 4
▪ Instruction bits:
1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

32



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 2: Determine logic for specification
▪ Read the “Destination Specification” section of Chapter 4
▪ Instruction bits:
1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

▪ d3 determines if the output should be written to memory
▪ Which bit of our instruction is that?
▪ So writeM = instruction[3]?

33



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ What’s wrong with writeM = instruction[3]?
▪ What happens if we have an A-instruction?
▪ We only write to destinations in the case of a C-instruction
▪ So, writeM = C-instruction & instruction[3]
▪ Certain actions only occur on certain instruction types
▪ You may have to include a check for instruction type in your logic

34



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Hack CPU Implementation: Logic Sub Chips

❖ We provide three sub chips and tests that implement the 
control logic for the A Register, D Register, and PC
▪ LoadAReg contains logic for loading the A Register
▪ LoadDReg contains logic for loading the D Register
▪ JumpLogic contains logic for determining if the PC should 

load, jump, or increment

❖ Implement and test these first, then use them in your CPU 
implementation
▪ Intended to help you narrow the scope of bugs

35



Lecture 13: Assembler & Compilers Overview CSE 390B, Spring 2022

Lecture 13 Wrap-up

❖ Midterm will be graded with feedback by Thursday (5/12)

❖ Project 6: Mock Exam Problem & Building a Computer 
due this Thursday (5/12) at 11:59pm PDT

❖ Thursday’s Lecture Reading: Compilers Overview: 
Scanning and Parsing

❖ Please submit the mid-quarter feedback form if you 
haven’t already

36

https://courses.cs.washington.edu/courses/cse390b/22sp/readings/r14_Compilers%20Overview:%20Scanning%20and%20Parsing.html
https://docs.google.com/forms/d/e/1FAIpQLSecESu3m9OmPGuXgXr0QB94HQ4VsbCTDgvBqKPoYqhkAMo4rA/viewform?usp=sf_link

