
CSE 390B: Building Academic Success Through Bottom-Up Computing Autumn 2022

Midterm Examination November 10th, 2022, at 2:30pm

Name:

UW NetID:

Instructions:
● Make sure you have included your name (first & last) and your UW NetID on this page.
● When you finish the exam, turn in your exam to the course staff.
● You will have 60 minutes to complete the exam.
● Questions are not necessarily in order of difficulty.
● This exam is closed-note, closed-book (except for the reference sheet).
● There are 100 points distributed unevenly among five questions (most with multiple

parts).

Advice:
● Read each question carefully. Understand a question before you start writing.
● When applicable, elaborate on your answer, explain your thought process, and write

down the intermediate steps for possible partial credit. However, clearly indicate what
your final answer is.

● The questions are not necessarily in order of difficulty. Skip around. Make sure you get
to all the questions.

● If you have questions, please raise your hand, and the course staff will get to you shortly.
● Relax. You are here to learn.

Technical Details:
● For Boolean expressions, use &, |, and ~ to specify And, Or, and Not, respectively. If you

use different symbols, explicitly specify what they mean.
● When using a Mux or DMux gate, explicitly show or describe the select bits that the

inputs are connected to (e.g., the a input of the Mux is connected to the select bit of 0).

Question 1 2 3 4 5 Total

Possible Points 25 10 20 20 25 100

1. (25 points) In this problem, you will build Boolean circuits with three inputs and one
output. You may only use two-input And and Or gates and single-input Not gates.

An electronics company specializes in creating unique electronics chips that build on
many of the same fundamental logic gates that we have learned together in CSE 390B,
and they have requested your help with the Xor3Way chip. This chip has the same idea
as the XOR gate. As we might expect, the Xor3Way chip has an output of 1 when
exclusively one of its inputs is 1. However, there is actually another row in which the
Xor3Way gate has an output of 1.

It turns out that an n-input XOR gate has the following specification: the XOR of one
column with the XOR of the (n-1) other columns. For example, for an XOR gate with
three inputs, we can calculate the output for Xor3Way using the following Boolean
expression specification: a XOR (b XOR c).

a. Given the specification of Xor3Way described in the paragraph above, write a
truth table for the circuit with three inputs and one output.

a b c out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

b. Based on the truth table you filled out, write a Boolean expression for out.

c. Implement the Boolean expression you came up with from part b for the out
output by completing the following HDL template or drawing a circuit diagram.
You do not need to do both.

CHIP Xor3Way {
// a, b, and c are the inputs
IN a, b, c;

// out is the result of the following specification:
// a XOR (b XOR c).
OUT out;

PARTS:
// Your code or circuit diagram here:

}

d. An n-input Xor logic gate is an odd function (odd in the sense of an even or odd
number). Explain why you think the Xor logic gate is called an odd function. (Hint:
Look back at your truth table, specifically at the characteristics of the rows with
an output of 1.)

2. (10 points) Free response questions. Describe the answers to the following questions in
a paragraph.

a. Explain at a high level how you would build a circuit that takes three inputs and
returns 1 if an even number of the inputs are 1 and 0 otherwise. You may use
any number of And, Or, Not, or Xor gates that have two inputs. Describe which
gates you would use, how to wire them together, and how they contribute to the
specified output. You may write a Boolean expression or draw a circuit diagram in
addition to your explanation if you find that helpful. (Hint: Refer to problem 1.)

b. Describe two benefits of the two's complement number representation compared
to the signed representation of binary numbers.

3. (20 points) In this problem, you may only use two-input Mux gates, DFFs, and
combinational logic gates.

Draw the following circuit specification using conventional notation, omitting implicit clock
signals.

● The circuit takes three data inputs (i1, i2, and i3)
● The circuit has three outputs (o1, o2, and o3)
● Each output at time t + 1 is defined as follows:

o if (i2 | i3): o1(t + 1) = i1 | o1
else: o1(t + 1) = !o3

o if (o3): o2(t + 1) = i1 & i3
else: o2(t + 1) = i2 ^ o3

o if (i1 & (o1 | o2)): o3(t + 1) = o2
else: o3(t + 1) = i1 & i2 & i3

4. (20 points) Below is a sample program written in high-level pseudocode:

R2 = 0
R3 = 0
while (R0 >= R1) {

R0 = R0 - R1
R2 = R2 + 1

}
if (R0 == 0) {

R3 = 1
}

a. Write an equivalent Hack Assembly program using the virtual registers R0, R1,
R2, and R3, each of which corresponds to the values in memory at addresses 0,
1, 2, and 3, respectively.

b. What does this pseudocode do, and what do the registers in this problem
represent?

5. (25 points) Below is a Hack Assembly program with a bug.

01. (START)
02. @R0
03. M = 1
04. @2
05. D = A
06. @R1
07. M = D
08. (LOOP)
09. @R1
10. D = M
11. @7
12. D = D - A
13. // PART I
14. @END
15. D; JGE
16. (CHECK_PAIR_SORTED)
17. @R1
18. A = M
19. D = M
20. A = A + 1
21. D = M - D
22. @UPDATE_INDEX
23. D; JGT
24. @R0
25. M = 0
26. (UPDATE_INDEX)
27. @R1
28. M = M + 1
29. // PART II
30. @LOOP
31. 0; JMP
32. (END)
33. @END
34. 0; JMP

Here is the memory state before the Hack
Assembly code to the left runs (we will use this to
answer later parts of this problem):

Address Value

0 0

1 2

2 5

3 6

4 7

5 9

6 10

7 11

a. Trace through the code starting with the state of memory given in the table.
Indicate the value of the registers A, D, and M at each of the following locations
commented with “PART #” the first time you reach that location when executing
the code.

i. Values of A, D, and M when first reaching comment with “PART I”

A =

D =

M =

ii. Values of A, D, and M when first reaching comment with “PART II”

A =

D =

M =

b. Starting with the state of memory given in the table, what are the values stored at
address 0, address 1, and address 2 in memory after the Hack Assembly code
runs to completion (i.e., enters the END infinite loop)?

Value at address 0 =

Value at address 1 =

Value at address 2 =

c. The Hack Assembly code is supposed to check whether the elements stored in
memory address R2 to R7, inclusive, are sorted so that the values are
non-decreasing as the memory addresses increase. The result, a boolean of
whether the elements are non-decreasing, is stored in address R0. The Hack
Assembly program above attempts to be equivalent to the following pseudocode:

1. R0 = 1
2. for (i = 2; i < 7; i++) {
3. if (RAM[i] > RAM[i + 1]) {
4. R0 = 0
5. }
6. }

We can fix the bug in the Hack Assembly code by modifying a single line of
Hack Assembly. Circle the section of code indicated by the symbols in the Hack
Assembly program in which we should modify the line to fix the bug.

START LOOP CHECK_PAIR_SORTED UPDATE_INDEX END

d. What line number would you modify to fix the bug in the Hack Assembly program,
and what should the line of code be instead?

i. Line number:

ii. Line of Hack Assembly to fix the bug:

e. Does the buggy Hack Assembly program return the correct output given the initial
memory state shown in the table? If so, how could you change the initial memory
state for the bug to appear? If not, how could you change the initial memory state
for the buggy assembly program to produce the correct output?

CSE 390B Midterm Reference Sheet

a b out

0 0 0

0 1 0

1 0 0

1 1 1

a b out

0 0 0

0 1 1

1 0 1

1 1 1

in out

0 1

1 0

a b sel out

0 0 0 0

0 1 0 0

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

0

1

-1

D

A

!D

!A

-D

-A

D+1

A+1

D-1

A-1

D+A

D-A

A-D

D&A

D|A

M

!M

-M

M+1

M-1

D+M

D-M

M-D

D&M

D|M

(empty)

M

D

A

MD

AM

AD

AMD

(empty) No jump

JGT
Jump if

out > 0

JEQ
Jump if

out = 0

JGE
Jump if

out >= 0

JLT
Jump if

out < 0

JNE
Jump if

out != 0

JLE
Jump if

out <= 0

JMP
Always

jump

out(t) = in(t-1)

• Triangle indicates implicitly connected to
hardware clock

• out only changes on clock signal
boundaries

Fundamental Combinational Logic Gates Fundamental Sequential Logic Gate

HDL

Hack Assembly Language

Syntax:

• Basic Format: ChipName (in1=w1, in2=w2, ..., out=w3);

• Example: Mux (a=w1, b=w2, sel=w3, out=w4);

• Multiple wires connected to single output:
 Mux (a=w1, b=w2, sel=w3, out=w4, out=w5);

Multi-Bit Buses:

• Accessing Single Bit: w1[2]

• Slicing Multiple Bits: w1[0..3] (indices inclusive)

• Multi-Bit Input / Output Declaration: IN a[16];

Special Values:

• true is an any-width bus of all 1s, false of all 0s

Label: (LABELNAME)

• Binds symbol LABELNAME to line number of instruction after it

A-Instructions: @VALUE

• Loads VALUE into A register

C-Instructions: DEST=COMP;JUMP

• DEST or JUMP optional

• Performs COMP, result is stored in DEST, and if the result satisfies JUMP the PC

jumps to address in A register

Machine Characteristics:

• Two physical registers: D, A

• Pseudoregister M accesses memory at address A

• RAM and ROM have different, 0-indexed address spaces

Existing Symbols:

• R0...R15 are “virtual registers”: symbols bound to addresses 0 ... 15 of RAM

• SCREEN is symbol bound to address at start of screen memory map

• KBD is bound to address of keyboard memory map (immediately after screen)

JUMP

DEST

C-Instructions: Options for Fields

COMP

