
Appendix A: Hardware Description Language (HDL)

Intelligence is the faculty of making artificial objects, especially tools to make tools.

—Henry Bergson (1859–1941)

A Hardware Description Language (HDL) is a formalism for defining and testing

chips: objects whose interfaces consist of input and output pins that carry Boolean

signals, and whose bodies are composed of interconnected collections of other,

lower-level, chips. This appendix describes a typical HDL, as understood by the

hardware simulator supplied with the book. Chapter 1 (in particular, section 1.1)

provides essential background without which this appendix does not make much

sense.

How to Use This Appendix This is a technical reference, and thus there is no need

to read it from beginning to end. Instead, we recommended focusing on selected

sections, as needed. Also, HDL is an intuitive and self-explanatory language, and the

best way to learn it is to play with some HDL programs using the supplied hardware

simulator. Therefore, we recommend to start experimenting with HDL programs as

soon as you can, beginning with the following example.

A.1 Example

Figure A.1 specifies a chip that accepts two three-bit numbers and outputs whether

they are equal or not. The chip logic uses Xor gates to compare the three bit-pairs,

and outputs true if all the comparisons agree. Each internal part Xxx invoked by an

HDL program refers to a stand-alone chip defined in a separate Xxx.hdl program.

Thus the chip designer who wrote the EQ3.hdl program assumed the availability of

three other lower-level programs: Xor.hdl, Or.hdl, and Not.hdl. Importantly,

though, the designer need not worry about how these chips are implemented. When

building a new chip in HDL, the internal parts that participate in the design are

always viewed as black boxes, allowing the designer to focus only on their proper

arrangement in the current chip architecture.

Thanks to this modularity, all HDL programs, including those that describe

high-level chips, can be kept short and readable. For example, a complex chip like

RAM16K can be implemented using a few internal parts (e.g., RAM4K chips), each

described in a single HDL line. When fully evaluated by the hardware simulator all

the way down the recursive chip hierarchy, these internal parts are expanded into

many thousands of interconnected elementary logic gates. Yet the chip designer need

not be concerned by this complexity, and can focus instead only on the chip’s top-

most architecture.

A.2 Conventions

File extension: Each chip is defined in a separate text file. A chip whose name is

Xxx is defined in file Xxx.hdl.

Chip structure: A chip definition consists of a header and a body. The header

specifies the chip interface, and the body its implementation. The header acts as the

chip’s API, or public documentation. The body should not interest people who use

the chip as an internal part in other chip definitions.

/** Checks if two 3-bit input buses are equal */

CHIP EQ3 {

IN a[3], b[3];

OUT out; // True iff a=b

PARTS:

Xor(a=a[0], b=b[0], out=c0);

Xor(a=a[1], b=b[1], out=c1);

Xor(a=a[2], b=b[2], out=c2);

Or(a=c0, b=c1, out=c01);

Or(a=c01, b=c2, out=neq);

Not(in=neq, out=out);

}

Figure A.1 HDL program example.

282 Appendix A

Syntax conventions: HDL is case sensitive. HDL keywords are written in uppercase

letters.

Identifier naming: Names of chips and pins may be any sequence of letters and

digits not starting with a digit. By convention, chip and pin names start with a capi-

tal letter and a lowercase letter, respectively. For readability, such names can include

uppercase letters.

White space: Space characters, newline characters, and comments are ignored.

Comments: The following comment formats are supported:

// Comment to end of line

/* Comment until closing */

/** API documentation comment */

A.3 Loading Chips into the Hardware Simulator

HDL programs (chip descriptions) are loaded into the hardware simulator in three

different ways. First, the user can open an HDL file interactively, via a ‘‘load file’’

menu or GUI icon. Second, a test script (discussed here) can include a load Xxx.hdl

command, which has the same effect. Finally, whenever an HDL program is loaded

and parsed, every chip name Xxx listed in it as an internal part causes the simulator

to load the respective Xxx.hdl file, all the way down the recursive chip hierarchy. In

every one of these cases, the simulator goes through the following logic:

if Xxx.hdl exists in the current directory

then load it (and all its descendents) into the simulator

else

if Xxx.hdl exists in the simulator’s builtIn chips directory

then load it (and all its descendents) into the simulator

else

issue an error message.

The simulator’s builtIn directory contains executable versions of all the chips

specified in the book, except for the highest-level chips (CPU, Memory, and Com-

puter). Hence, one may construct and test every chip mentioned in the book before

all, or even any, of its lower-level chip parts have been implemented: The simulator

will automatically invoke their built-in versions instead. Likewise, if a lower-level

chip Xxx has been implemented by the user in HDL, the user can still force the

283 Hardware Description Language (HDL)

simulator to use its built-in version instead, by simply moving the Xxx.hdl file out

from the current directory. Finally, in some cases the user (rather than the simulator)

may want to load a built-in chip directly, for example, for experimentation. To do

so, simply navigate to the tools/builtIn directory—a standard part of the hard-

ware simulator environment—and select the desired chip from there.

A.4 Chip Header (Interface)

The header of an HDL program has the following format:

CHIP chip name {

IN input pin name, input pin name, . . . ;

OUT output pin name, output pin name, . . . ;

// Here comes the body.

}

m CHIP declaration: The CHIP keyword is followed by the chip name. The rest of

the HDL code appears between curly brackets.

m Input pins: The IN keyword is followed by a comma-separated list of input pin

names. The list is terminated with a semicolon.

m Output pins: The OUT keyword is followed by a comma-separated list of output

pin names. The list is terminated with a semicolon.

Input and output pins are assumed by default to be single-bit wide. A multi-bit

bus can be declared using the notation pin name[w] (e.g., a[3] in EQ3.hdl). This

specifies that the pin is a bus of width w. The individual bits in a bus are indexed

0 . . .w� 1, from right to left (i.e., index 0 refers to the least significant bit).

A.5 Chip Body (Implementation)

A.5.1 Parts

A typical chip consists of several lower-level chips, connected to each other and to the

chip input/output pins in a certain ‘‘logic’’ (connectivity pattern) designed to deliver

the chip functionality. This logic, written by the HDL programmer, is described in

the chip body using the format:

284 Appendix A

PARTS:

internal chip part;

internal chip part;

. . .

internal chip part;

Where each internal chip part statement describes one internal chip with all its con-

nections, using the syntax:

chip name (connection, . . . , connection);

Where each connection is described using the syntax:

part’s pin names ¼ chip’s pin name

(Throughout this appendix, the presently defined chip is called chip, and the lower-

level chips listed in the PARTS section are called parts).

A.5.2 Pins and Connections

Each connection describes how one pin of a part is connected to another pin in the

chip definition. In the simplest case, the programmer connects a part’s pin to an in-

put or output pin of the chip. In other cases, a part’s pin is connected to another pin

of another part. This internal connection requires the introduction of an internal pin,

as follows:

Internal Pins In order to connect an output pin of one part to the input pins of

other parts, the HDL programmer can create and use an internal pin, say v, as

follows:

Part1 (..., out=v); // out of Part1 is piped into v

Part2 (in=v, ...); // v is piped into in of Part2

Part3 (a=v, b=v, ...); // v is piped into both a and b of Part3

Internal pins (like v) are created as needed when they are specified the first time in

the HDL program, and require no special declaration. Each internal pin has fan-in 1

and unlimited fan-out, meaning that it can be fed from a single source only, yet it can

feed (through multiple connections) many other parts. In the preceding example, the

internal pin v simultaneously feeds both Part2 (through in) and Part3 (though a

and b).

285 Hardware Description Language (HDL)

Input Pins Each input pin of a part may be fed by one of the following sources:

m an input pin of the chip

m an internal pin

m one of the constants true and false, representing 1 and 0, respectively

Each input pin has fan-in 1, meaning that it can be fed by one source only. Thus

Part (in1=v,in2=v,...) is a valid statement, whereas Part (in1=v,in1=u,

...) is not.

Output Pins Each output pin of a part may feed one of the following destinations:

m an output pin of the chip

m an internal pin

A.5.3 Buses

Each pin used in a connection—whether input, output, or internal—may be a multi-

bit bus. The widths (number of bits) of input and output pins are defined in the chip

header. The widths of internal pins are deduced implicitly, from their connections.

In order to connect individual elements of a multi-bit bus input or output pin, the

pin name (say x) may be subscripted using the syntax x[i] or x[i...j]=v, where v

is an internal pin. This means that only the bits indexed i to j (inclusive) of pin x are

connected to the specified internal pin. An internal pin (like v above) may not be

subscripted, and its width is deduced implicitly from the width of the bus pin to

which it is connected the first time it is mentioned in the HDL program.

The constants true and false may also be used as buses, in which case the

required width is deduced implicitly from the context of the connection.

Example

CHIP Foo {

IN in[8] // 8-bit input

OUT out[8] // 8-bit output

// Foo's body (irrelevant to the example)

}

Suppose now that Foo is invoked by another chip using the part statement:

Foo(in[2..4]=v, in[6..7]=true, out[0..3]=x, out[2..6]=y)

286 Appendix A

where v is a previously declared 3-bit internal pin, bound to some value. In that case,

the connections in[2..4]=v and in[6..7]=true will bind the in bus of the Foo

chip to the following values:

7 6 5 4 3 2 1 0 (Bit)
in:

1 1 ? v[2] v[1] v[0] ? ? (Contents)

Now, let us assume that the logic of the Foo chip returns the following output:

7 6 5 4 3 2 1 0
out:

1 1 0 1 0 0 1 1

In that case, the connections out[0..3]=x and out[2..6]=y will yield:

3 2 1 0 4 3 2 1 0
x:

0 0 1 1
y:

1 0 1 0 0

A.6 Built-In Chips

The hardware simulator features a library of built-in chips that can be used as inter-

nal parts by other chips. Built-in chips are implemented in code written in a pro-

gramming language like Java, operating behind an HDL interface. Thus, a built-in

chip has a standard HDL header (interface), but its HDL body (implementation)

declares it as built-in. Figure A.2 gives a typical example.

The identifier following the keyword BUILTIN is the name of the program unit

that implements the chip logic. The present version of the hardware simulator is built

in Java, and all the built-in chips are implemented as compiled Java classes. Hence,

the HDL body of a built-in chip has the following format:

BUILTIN Java class name;

where Java class name is the name of the Java class that delivers the chip function-

ality. Normally, this class will have the same name as that of the chip, for example

Mux.class. All the built-in chips (compiled Java class files) are stored in a directory

called tools/builtIn, which is a standard part of the simulator’s environment.

Built-in chips provide three special services:

m Foundation: Some chips are the atoms from which all other chips are built.

In particular, we use Nand gates and flip-flop gates as the building blocks of all

287 Hardware Description Language (HDL)

combinational and sequential chips, respectively. Thus the hardware simulator fea-

tures built-in versions of Nand.hdl and DFF.hdl.

m Certification and efficiency: One way to modularize the development of a com-

plex chip is to start by implementing built-in versions of its underlying chip parts.

This enables the designer to build and test the chip logic while ignoring the logic

of its lower-level parts—the simulator will automatically invoke their built-in imple-

mentations. Additionally, it makes sense to use built-in versions even for chips that

were already constructed in HDL, since the former are typically much faster and

more space-efficient than the latter (simulation-wise). For example, when you load

RAM4k.hdl into the simulator, the simulator creates a memory-resident data struc-

ture consisting of thousands of lower-level chips, all the way down to the flip-flop

gates at the bottom of the recursive chip hierarchy. Clearly, there is no need to repeat

this drill-down simulation each time RAM4K is used as part in higher-level chips. Best

practice tip: To boost performance and minimize errors, always use built-in versions

of chips whenever they are available.

m Visualization: Some high-level chips (e.g., memory units) are easier to under-

stand and debug if their operation can be inspected visually. To facilitate this ser-

vice, built-in chips can be endowed (by their implementer) with GUI side effects.

This GUI is displayed whenever the chip is loaded into the simulator or invoked as

a lower-level part by the loaded chip. Except for these visual side effects, GUI-

empowered chips behave, and can be used, just like any other chip. Section A.8 pro-

vides more details about GUI-empowered chips.

/** 16-bit Multiplexor.

If sel = 0 then out = a else out = b.

This chip has a built-in implementation delivered by an external

Java class. */

CHIP Mux16 {

IN a[16], a[16], sel;

OUT out[16];

BUILTIN Mux; // Reference to builtIn/Mux.class, that

// implements both the Mux.hdl and the

// Mux16.hdl built-in chips.

}

Figure A.2 HDL definition of a built-in chip.

288 Appendix A

A.7 Sequential Chips

Computer chips are either combinational or sequential (also called clocked). The op-

eration of combinational chips is instantaneous. When a user or a test script changes

the values of one or more of the input pins of a combinational chip and reevaluates

it, the simulator responds by immediately setting the chip output pins to a new set of

values, as computed by the chip logic. In contrast, the operation of sequential chips is

clock-regulated. When the inputs of a sequential chip change, the outputs of the chip

may change only at the beginning of the next time unit, as effected by the simulated

clock.

In fact, sequential chips (e.g., those implementing counters) may change their out-

put values when the time changes even if none of their inputs changed. In contrast,

combinational chips never change their values just because of the progression of

time.

A.7.1 The Clock

The simulator models the progression of time by supporting two operations called

tick and tock. These operations can be used to simulate a series of time units, each

consisting of two phases: a tick ends the first phase of a time unit and starts its sec-

ond phase, and a tock signals the first phase of the next time unit. The real time that

elapsed during this period is irrelevant for simulation purposes, since we have full

control over the clock. In other words, either the simulator’s user or a test script can

issue ticks and tocks at will, causing the clock to generate series of simulated time

units.

The two-phased time units regulate the operations of all the sequential chip parts

in the simulated chip architecture, as follows. During the first phase of the time unit

(tick), the inputs of each sequential chip in the architecture are read and affect the

chip’s internal state, according to the chip logic. During the second phase of the time

unit (tock), the outputs of the chip are set to the new values. Hence, if we look at a

sequential chip ‘‘from the outside,’’ we see that its output pins stabilize to new values

only at tocks—between consecutive time units.

There are two ways to control the simulated clock: manual and script-based. First,

the simulator’s GUI features a clock-shaped button. One click on this button (a tick)

ends the first phase of the clock cycle, and a subsequent click (a tock) ends the second

phase of the cycle, bringing on the first phase of the next cycle, and so on. Alter-

natively, one can run the clock from a test script, for example, using the command

289 Hardware Description Language (HDL)

repeat n {tick, tock, output;}. This particular example instructs the simulator

to advance the clock n time units, and to print some values in the process. Test

scripts and commands like repeat and output are described in detail in appendix B.

A.7.2 Clocked Chips and Pins

A built-in chip can declare its dependence on the clock explicitly, using the

statement:

CLOCKED pin, pin, . . . , pin;

where each pin is one of the input or output pins declared in the chip header. The

inclusion of an input pin x in the CLOCKED list instructs the simulator that changes to

x should not affect any of the chip’s output pins until the beginning of the next time

unit. The inclusion of an output pin x in the CLOCKED list instructs the simulator that

changes in any of the chip’s input pins should not affect x until the beginning of the

next time unit.

Note that it is quite possible that only some of the input or output pins of a chip

are declared as clocked. In that case, changes in the nonclocked input pins may affect

the nonclocked output pins in a combinational manner, namely, independent of the

clock. In fact, it is also possible to have the CLOCKED keyword with an empty list of

pins, signifying that even though the chip may change its internal state depending on

the clock, changes to any of its input pins may cause immediate changes to any of its

output pins.

The ‘‘Clocked’’ Property of Chips How does the simulator know that a given chip

is clocked? If the chip is built-in, then its HDL code may include the keyword

CLOCKED. If the chip is not built-in, then it is said to be clocked when one or more of

its lower-level chip parts are clocked. This ‘‘clocked’’ property is checked recursively,

all the way down the chip hierarchy, where a built-in chip may be explicitly clocked.

If such a chip is found, it renders every chip that depends on it (up the hierarchy)

implicitly clocked. It follows that nothing in the HDL code of a given chip suggests

that it may be clocked—the only way to know for sure is to read the chip documen-

tation. For example, let us consider how the built-in DFF chip (figure A.3) impacts

the ‘‘clockedness’’ of some of other chips presented in the book.

Every sequential chip in our computer architecture depends in one way or another

on (typically numerous) DFF chips. For example, the RAM64 chip is made of eight

RAM8 chips. Each one of these chips is made of eight lower-level Register chips.

Each one of these registers is made of sixteen Bit chips. And each one of these Bit

290 Appendix A

chips contains a DFF part. It follows that Bit, Register, RAM8, RAM64 and all the

memory units above them are also clocked chips.

It’s important to remember that a sequential chip may well contain combinational

logic that is not affected by the clock. For example, the structure of every sequen-

tial RAM chip includes combinational circuits that manage its addressing logic (de-

scribed in chapter 3).

A.7.3 Feedback Loops

We say that the use of a chip entails a feedback loop when the output of one of

its parts affects the input of the same part, either directly or through some (possibly

long) path of dependencies. For example, consider the following two examples of

direct feedback dependencies:

Not (in=loop1, out=loop1) // Invalid

DFF (in=loop2, out=loop2) // Valid

In each example, an internal pin (loop1 or loop2) attempts to feed the chip’s input

from its output, creating a cycle. The difference between the two examples is that Not

is a combinational chip whereas DFF is clocked. In the Not example, loop1 creates

an instantaneous and uncontrolled dependency between in and out, sometimes

called data race. In the DFF case, the in-out dependency created by loop2 is

delayed by the clocked logic of the DFF, and thus out(t) is not a function of in(t)

but rather of in(t-1). In general, we have the following:

Valid/Invalid Feedback Loops When the simulator loads a chip, it checks recur-

sively if its various connections entail feedback loops. For each loop, the simulator

/** D-Flip-Flop.

If load[t-1]=1 then out[t]=in[t-1] else out does not change. */

CHIP DFF {

IN in;

OUT out;

BUILTIN DFF; // Implemented by builtIn/DFF.class.

CLOCKED in, out; // Explicitly clocked.

}

Figure A.3 HDL definition of a clocked chip.

291 Hardware Description Language (HDL)

checks if the loop goes through a clocked pin, somewhere along the loop. If so, the

loop is allowed. Otherwise, the simulator stops processing and issues an error mes-

sage. This is done in order to avoid uncontrolled data races.

A.8 Visualizing Chip Operations

Built-in chips may be ‘‘GUI-empowered.’’ These chips feature visual side effects,

designed to animate chip operations. A GUI-empowered chip can come to play in a

simulation in two different ways, just like any other chip. First, the user can load it

directly into the simulator. Second, and more typically, whenever a GUI-empowered

chip is used as a part in the simulated chip, the simulator invokes it automatically.

In both cases, the simulator displays the chip’s graphical image on the screen. Using

this image, which is typically an interactive GUI component, one may inspect the

current contents of the chip as well as change its internal state, when this operation is

supported by the built-in chip implementation. The current version of this simulator

features the following set of GUI-empowered chips:

ALU: Displays the Hack ALU’s inputs and output as well as the presently com-

puted function.

Registers (There are three of them: ARegister—address register, DRegister—data

register, and PC—program counter): Displays the contents of the register and

allows modifying its contents.

Memory chips (ROM32K and various RAM chips): Displays a scrollable array-like

image that shows the contents of all the memory locations and allows their modifi-

cation. If the contents of a memory location changes during the simulation, the re-

spective entry in the GUI changes as well. In the case of the ROM32K chip (which

serves as the instruction memory of our computer platform), the GUI also features a

button that enables loading a machine language program from an external text file.

Screen chip: If the HDL code of a loaded chip invokes the built-in Screen chip, the

hardware simulator displays a 256 rows by 512 columns window that simulates the

physical screen. When the RAM-resident memory map of the screen changes during

the simulation, the respective pixels in the screen GUI change as well, via a ‘‘refresh

logic’’ embedded in the simulator implementation.

Keyboard chip: If the HDL code of a loaded chip invokes the built-in Keyboard

chip, the simulator displays a clickable keyboard icon. Clicking this button connects

the real keyboard of your computer to the simulated chip. From this point on, every

292 Appendix A

key pressed on the real keyboard is intercepted by the simulated chip, and its binary

code is displayed in the keyboard’s RAM-resident memory map. If the user moves

the mouse focus to another area in the simulator GUI, the control of the keyboard

is restored to the real computer. Figure A.4 illustrates many of the features just

described.

The chip logic in figure A.4 feeds the 16-bit in value into two destinations: register

number address in the RAM16K chip and register number address in the Screen chip

(presumably, the HDL programmer who wrote this code has figured out the widths

of these address pins from the documentation of these chips). In addition, the chip

logic routes the value of the currently pressed keyboard key to the internal pin c.

These meaningless operations are designed for one purpose only: to illustrate how

the simulator deals with built-in GUI-empowered chips. The actual impact is shown

in figure A.5.

A.9 Supplied and New Built-In Chips

The built-in chips supplied with the hardware simulator are listed in figure A.6.

These Java-based chip implementations were designed to support the construction

and simulation of the Hack computer platform (although some of them can be used

to support other 16-bit platforms). Users who wish to develop hardware platforms

// Demo of GUI-empowered chips.

// The logic of this chip is meaningless, and is used merely to

// force the simulator to display the GUI effects of some other

// chips.

CHIP GUIDemo {

IN in[16], load, address[15];

OUT out[16];

PARTS:

RAM16K(in=in, load=load, address=address[0. .13], out=a);

Screen(in=in, load=load, address=address[0. .12], out=b);

Keyboard(out=c);

}

Figure A.4 HDL definition of a GUI-empowered chip.

293 Hardware Description Language (HDL)

Figure A.5 GUI-empowered chips. Since the loaded HDL program uses GUI-empowered
chips as internal parts (step 1), the simulator draws their respective GUI images (step 2).
When the user changes the values of the chip input pins (step 3), the simulator reflects these
changes in the respective GUIs (step 4). The circled horizontal line is the visual side effect
of storing �1 in memory location 5012. Since the 16-bit 2’s complement binary code of �1
is 1111111111111111, the computer draws 16 pixels starting at the 320th column of row 156,
which happen to be the screen coordinates associated with address 5012 of the screen memory
map (the exact memory-to-screen mapping is given in chapter 4).

294 Appendix A

Chip name
Specified

in chapter

Has

GUI
Comment

Nand 1 Foundation of all combinational chips

Not 1

And 1

Or 1

Xor 1

Mux 1

DMux 1

Not16 1

And16 1

Or16 1

Mux16 1

Or8way 1

Mux4way16 1

Mux8way16 1

DMux4way 1

DMux8way 1

HalfAdder 2

FullAdder 2

Add16 2

ALU 2 rZ
Inc16 2

DFF 3 Foundation of all sequential chips

Bit 3

Register 3

ARegister 3 rZ Identical operation to Register, with GUI

DRegister 3 rZ Identical operation to Register, with GUI

RAM8 3 rZ
RAM64 3 rZ
RAM512 3 rZ
RAM4K 3 rZ
RAM16K 3 rZ
PC 3 rZ Program counter

ROM32K 5 rZ GUI allows loading a program from a text file

Screen 5 rZ GUI connects to a simulated screen

Keyboard 5 rZ GUI connects to the actual keyboard

Figure A.6 All the built-in chips supplied with the present version of the hardware simulator.
A built-in chip has an HDL interface but is implemented as an executable Java class.

295 Hardware Description Language (HDL)

other than Hack would probably benefit from the simulator’s ability to accommo-

date new built-in chip definitions.

Developing New Built-In Chips The hardware simulator can execute any desired

chip logic written in HDL; the ability to execute new built-in chips (in addition to

those listed in figure A.6) written in Java is also possible, using a chip-extension API.

Built-in chip implementations can be designed by users in Java to add new hardware

components, introduce GUI effects, speed-up execution, and facilitate behavioral

simulation of chips that are not yet developed in HDL (an important capability when

designing new hardware platforms and related hardware construction projects). For

more information about developing new built-in chips, see chapter 13.

296 Appendix A

