

Fundamentals of Circuits, Hardware Simulation, Skills Inventory, Project 1 Demo

Significant material adapted from www.nand2tetris.org. © Noam Nisan and Shimon Schocken.

Agenda

Morning Warm-up Question

- Let's Get Organized!
 - What's included in your at-home study area?
- Boolean Logic
 - What is Boolean Logic?
 - Boolean Function Synthesis
 - Hardware Description Language
- Project 1
 - Demo
 - Multi-Bit Buses

Morning Warm-Up Question

Name Preferred Pronouns

Day 4 of online Spring quarter...

What is one thing that has maybe surprised you / weren't expecting in navigating online classes so far?

Agenda

Morning Warm-up Question

- Let's Get Organized!
 - What's included in your at-home study area?
- Boolean Logic
 - What is Boolean Logic?
 - Boolean Function Synthesis
 - Hardware Description Language
- Project 1
 - Demo
 - Multi-Bit Buses

BREAKOUTS!

We'll see how this goes...

Breakout groups

In your small groups...

Talk about what you think you'll need in setting up your at-home study area.

- What does that environment look like?
- What tools, resources, and/or vibes does your study area require?
- What might be a barrier in setting up your ideal at home study environment?

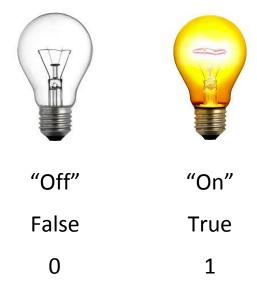
Agenda

Morning Warm-up Question

- Let's Get Organized!
 - What's included in your at-home study area?
- Boolean Logic
 - What is Boolean Logic?
 - Boolean Function Synthesis
 - Hardware Description Language
- Project 1
 - Demo
 - Multi-Bit Buses

Boolean Values

- A binary choice: true or false
- You've seen these as a type in Java
 - Boolean Logic is a system built entirely from these values and operations between them



What is Boolean Logic?

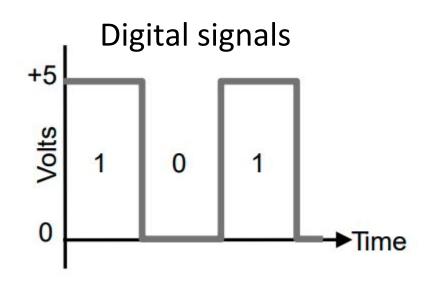
- A system of reasoning built from these values and operations between them
 - Similar to the numerical algebra we're used to

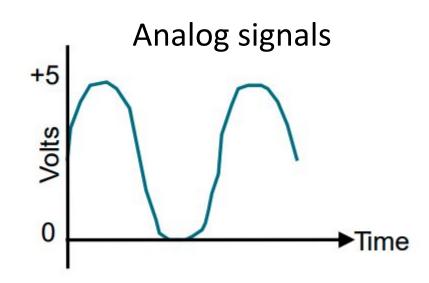
$$2 + 5 = 7$$

True And False = False
$$(1 \text{ And } 0 = 0)$$

Aside: Why Study Boolean Logic?

- In reality, physical wires in a computer could have any number of volts (analog)
- We choose to use only 2 values in hardware
 - Reduces errors in hardware significantly, easier to reason about!





Boolean Operations

- Can use simple logical operations to combine booleans
 - Truth table: Writing out every possible set of inputs and the corresponding output of the operation

$$x \text{ And } y$$

 $x \land y$

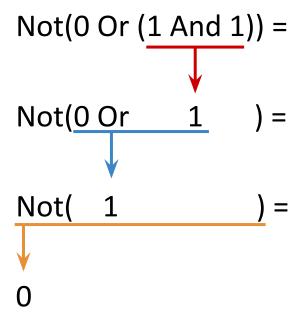
Х	у	Or
0	0	0
0	1	1
1	0	1
1	1	1

$$\operatorname{Not}(x)$$

Х	Not
0	1
1	0

Boolean Expressions

- How do we evaluate an expression?
 - Apply the truth tables over and over!



Boolean Functions

- We can define our own boolean functions
 - All we need are inputs and outputs!

$$f(x, y, z) = (x \text{ And } y) \text{ Or } (\text{Not}(x) \text{ And } z)$$

Х	у	Z	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Boolean Functions

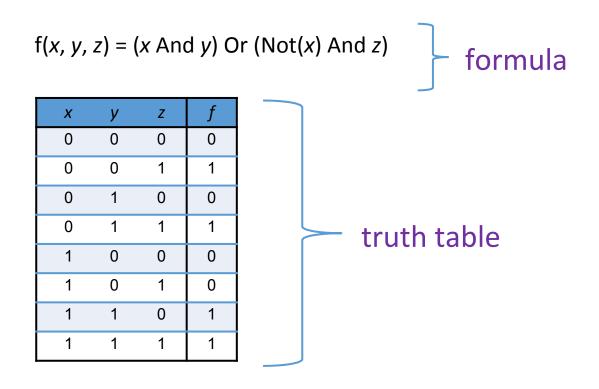
- We can define our own boolean functions
 - All we need are inputs and outputs!

$$f(x, y, z) = (x \text{Anc } y) \text{ Or } (\text{Not}(x) \text{Anc } z)$$

Х	у	Ζ	f
0	0	0	
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Boolean Functions

- We can define our own boolean functions
 - All we need are inputs and outputs!



Boolean Identities

```
• (x \text{ And } y) = (y \text{ And } x)
• (x \text{ Or } y) = (y \text{ Or } x) Commutativity

    (x And (y And z)) = ((x And y) And z)
    (x Or (y Or z)) = ((x Or y) Or z)

Associativity

(x And (y Or z)) = (x And y) Or (x And z)
(x Or (y And z)) = (x Or y) And (x Or z)

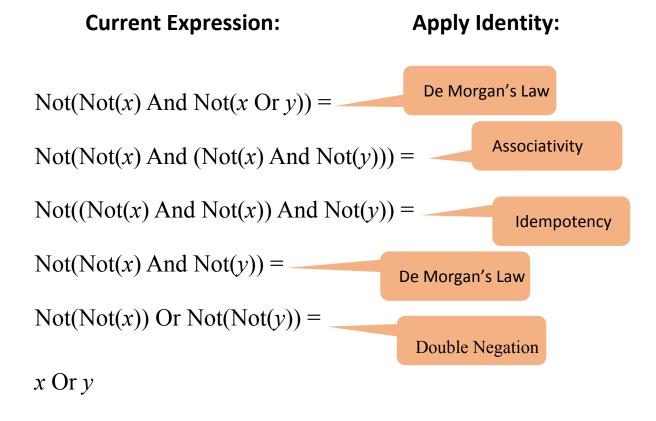
Distributive Property

    Not(x And y) = Not(x) Or Not(y)
    Not(x Or y) = Not(x) And Not(y)

    (... and many others!)
```

Working with Boolean Algebra

Option 1: Simplify using identities



Working with Boolean Algebra

Option 2: Use truth table to list all possible cases, then look for a simplified match

Not(Not(x) And Not(x Or y)) =

Х	у	Or
0	0	0
0	1	1
1	0	1
1	1	1

x Or y

Agenda

Morning Warm-up Question

- Let's Get Organized!
 - What's included in your at-home study area?
- Boolean Logic
 - What is Boolean Logic?
 - Boolean Function Synthesis
 - Hardware Description Language
- Project 1
 - Demo
 - Multi-Bit Buses

- We've seen how to build a truth table from an expression
 - Simply evaluate expression on all possible inputs

f(x, y, z) = (x And y) Or (Not(x) And z)

Х	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Can we do it in reverse?

f(x, y, z) = (x And y) Or (Not(x) And z)

Х	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

We can describe a single row with And & Not

х	у	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Not(x) And Not(y) And Not(z)

- We can describe a single row with And & Not
 - Here "describe" means creating an expression that is true in that case and false in all others

Х	у	Z	f	
0	0	0	1	1
0	0	1	0	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

Not(x) And Not(y) And Not(z)

- We can describe a single row with And & Not
 - Here "describe" means creating an expression that is true in that case and false in all others

х	у	Z	f		
0	0	0	1	1	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	0

Not(x) And Not(y) And Not(z)

Not(x) And y And Not(z)

- We can describe a single row with And & Not
 - Here "describe" means creating an expression that is true in that case and false in all others

х	у	Z	f				
0	0	0	1	1	0	0	$Not(x) \; And \; Not(y) \; And \; Not(z)$
0	0	1	0	0	0	0	
0	1	0	1	0	1	0	Not(x) And y And Not(z)
0	1	1	0	0	0	0	
1	0	0	1	0	0	1	x And Not(y) And Not(z)
1	0	1	0	0	0	0	
1	1	0	0	0	0	0	
1	1	1	0	0	0	0	

 All we need to describe the overall function is to combine these expressions using Or!

Х	у	Z	f			
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	0
1	0	0	1	0	0	1
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	0	0

```
f =
( Not(x) And Not(y) And Not(z) ) Or
( Not(x) And y And Not(z) ) Or
( x And Not(y) And Not(z) )
```

 All we need to describe the overall function is to combine these expressions using Or!

х	у	Z	f			
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	0
1	0	0	1	0	0	1
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	0	0

```
f =
( Not(x) And Not(y) And Not(z) ) Or
( Not(x) And y And Not(z) ) Or
( x And Not(y) And Not(z) )
```

Then simplify as needed: Not(z) And (Not(x) Or Not(y))

Boolean Functions Theorem

 Every function has a truth table, so we can do this for any function. Therefore:

Theorem

Any function can be represented by a combination of And, Not, & Or.

Not(z) And (Not(x)) Or Not(y)

Boolean Functions Theorem

 Every function has a truth table, so we can do this for any function. Therefore:

Theorem

Any function can be represented by a combination of And, Not, & Or.

Not(z) And (Not(x)) Or Not(y)

Can we do better?

Refining Our Theorem

Theorem

Any function can be represented by a combination of And, Not, & Or.

Example

Not(z) And (Not(x) Or Not(y))

Or can be represented by And & Not:

x Or y = Not(Not(x) And Not(y))

(Thanks DeMorgan's Laws!)

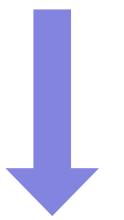
Refining Our Theorem

Theorem

Any function can be represented by a combination of And, Not, & Or.

Example

Not(z) And (Not(x) Or Not(y))



Or can be represented by And & Not:

x Or y = Not(Not(x) And Not(y))

(Thanks DeMorgan's Laws!)

Theorem

Any function can be represented by a combination of And & Not.

Example

Not(z) And Not(x And y)

The Nand Operation

- "Nand" stands for "Negated And"
 - The And operation, but every output is negated

X	y	And
0	0	0
0	1	0
1	0	0
1	1	1

Х	у	Nand
0	0	1
0	1	1
1	0	1
1	1	0

(x Nand y) = Not(x And y)

The Nand Operation

- "Nand" stands for "Negated And"
 - The And operation, but every output is negated

X	y	And
0	0	0
0	1	0
1	0	0
1	1	1

Х	у	Nand
0	0	1
0	1	1
1	0	1
1	1	0

(x Nand y) = Not(x And y)

Not x = (x Nand x) x And y = Not(x Nand y)

Refining Our Theorem Even More

Theorem

Any function can be represented by a combination of And & Not.

Example

Not(z) And Not(x And y)

Not & And can be represented with Nand:

Not x = (x Nand x)

x And y = Not(x Nand y)

Theorem

Any function can be represented solely by Nand operations.

Example

((z Nand z) Nand (x Nand y)) Nand ((z Nand z) Nand (x Nand y))

Refining Our Theorem Even More

Theorem

Any function can be represented by a combination of And & Not.

Example

Not(z) And Not(x And y)

Not & And can be represented with Nand:

$$x = (x \text{ Nand } x)$$
 $t(x \text{ Nand } y)$

Theorem

Any function can be represented solely by Nand operations.

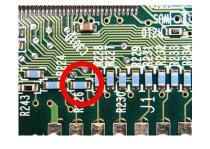
___, mand (x Nand y)) Nand and z) Nand (x Nand y))

Agenda

Morning Warm-up Question

- Let's Get Organized!
 - What's included in your at-home study area?
- Boolean Logic
 - What is Boolean Logic?
 - Boolean Function Synthesis
 - Hardware Description Language
- Project 1
 - Demo
 - Multi-Bit Buses

Logic Gates



 Logic gates implement these Boolean logic operations in hardware

Combining operations means wiring logic gates together

Building a Logic Gate

- Specification: We want a new logic gate called "Xor"
 - Outputs 1 when one input or the other is 1, but not both.

а	b	Xor
0	0	0
0	1	1
1	0	1
1	1	0

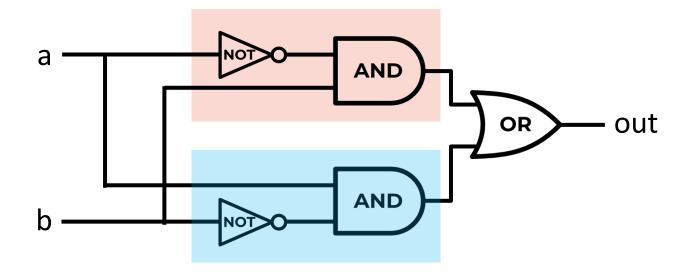
- Implementation: Combine existing logic gates!
 - For convenience, assume we already have And, Or, & Not

Building a Logic Gate

а	b	Xor	Xor =
0	0	0	
0	1	1	Not(a) And b Or
1	0	1	a And Not(b)
1	1	0	

Building a Logic Gate

а	b	Xor	Xor =
0	0	0	
0	1	1	Not(a) And b Or
1	0	1	a And Not(b)
1	1	0	



Hardware Design Language (.hdl)

- A programming language to specify hardware components and how they're connected
- There are many Hardware Design Languages in use today (e.g. VHDL, Verilog, SystemVerilog)
 - In this course, we'll use a simple one, just called "HDL".
- Unlike Java, HDL is a declarative language
 - The order of statements doesn't matter
 - Describes a physical system

Hardware Design Language (.hdl)

Makeup of an HDL file:

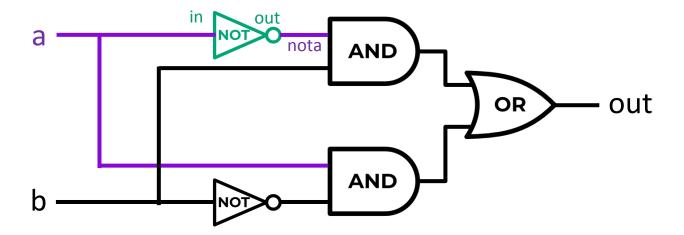
```
/**
                                    Comments describing
* Exclusive-or gate:
                                    expected behavior
* out = not (a == b)
* /
                                                            INTERFACE
CHIP Xor {
                                    Names of inputs and
  IN a, b;
                                    outputs
  OUT out;
  PARTS:
                                    Components that
  // Put your code here:
                                    make it up
                                                      IMPLEMENTATION
```

Hardware Design Language (.hdl)

Using a subcomponent: (in this case, an And gate)

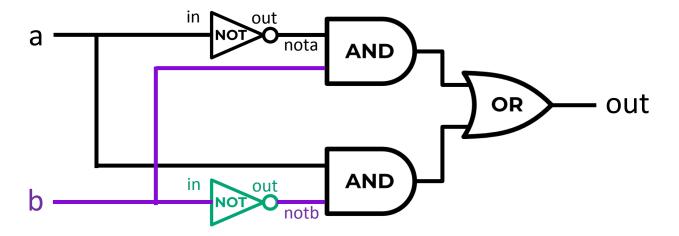
```
CHIP Xor {
    ...
PARTS:
And (a=w1, b=w2, out=w3);
}
```

```
w1 aand out w3 ...
```



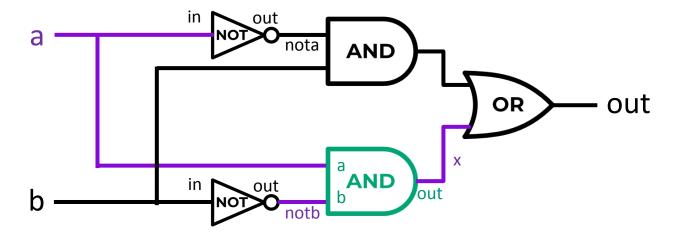
```
CHIP Xor {
   IN a, b;
   OUT out;

PARTS:
   Not (in=a, out=nota);
}
```



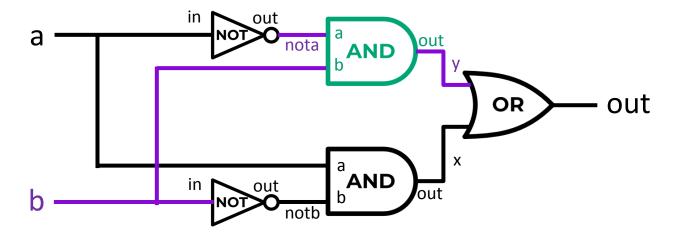
```
CHIP Xor {
   IN a, b;
   OUT out;

PARTS:
   Not (in=a, out=nota);
   Not (in=b, out=notb);
}
```



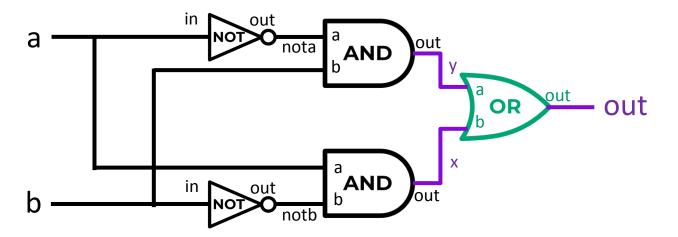
```
CHIP Xor {
   IN a, b;
   OUT out;

PARTS:
   Not (in=a, out=nota);
   Not (in=b, out=notb);
   And (a=a, b=notb, out=x);
}
```



```
CHIP Xor {
   IN a, b;
   OUT out;

PARTS:
   Not (in=a, out=nota);
   Not (in=b, out=notb);
   And (a=a, b=notb, out=x);
   And (a=nota, b=b, out=y);
}
```



```
CHIP Xor {
   IN a, b;
   OUT out;

PARTS:
   Not (in=a, out=nota);
   Not (in=b, out=notb);
   And (a=a, b=notb, out=x);
   And (a=nota, b=b, out=y);
   Or (a=x, b=y, out=out);
}
```

Agenda

Morning Warm-up Question

- Let's Get Organized!
 - What's included in your at-home study area?
- Boolean Logic
 - What is Boolean Logic?
 - Boolean Function Synthesis
 - Hardware Description Language
- Project 1
 - Demo
 - Multi-Bit Buses

Project 1 Demo

Editing HDL, Simulator Tools, Using Built-In Chips

Agenda

Morning Warm-up Question

- Let's Get Organized!
 - What's included in your at-home study area?
- Boolean Logic
 - What is Boolean Logic?
 - Boolean Function Synthesis
 - Hardware Description Language
- Project 1
 - Demo
 - Multi-Bit Buses

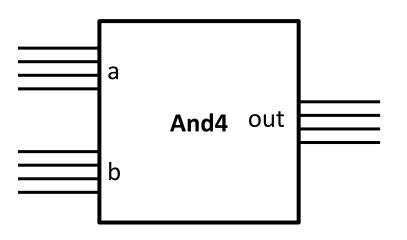
Multi-Bit Buses in HDL

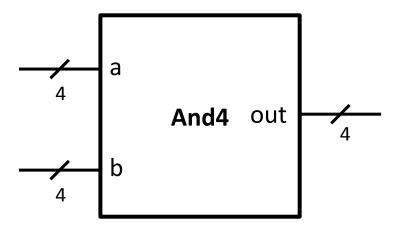
- Sometimes it's useful to manipulate many wires as a group
- For the programmer's convenience, we think of them as a single entity
 - Called a "bus"
- Most HDLs include a way to specify buses
 - Including ours! ²

Multi-Bit Buses in HDL

```
/**
 * Bit-wise And of two 4-bit inputs
 */
CHIP And4 {
    IN a[4], b[4];
    OUT out[4];

PARTS:
    And (a=a[0], b=b[0], out=out[0]);
    And (a=a[1], b=b[1], out=out[1]);
    And (a=a[2], b=b[2], out=out[2]);
    And (a=a[3], b=b[3], out=out[3]);
}
```





Project 1

PART I: Study Skills Inventory

Self-assessing your skill level in various study practices and habits.

PART II: Boolean Logic

 If you've cloned your repo, you have everything you need to get started on project 1!

PART III: Boolean Logic Reflection

 Reflecting on what your experience was like in working through the Boolean Logic project.

DUE NEXT TUESDAY 11:59PM

Don't forget to bring your "paper reactions" too :)