
1

CSE 390a

Lecture 4

Persistent shell settings; users/groups; permissions

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/390a/

http://www.cs.washington.edu/390a/

2

Lecture summary

• Persistent settings for your bash shell

• User accounts and groups

• File permissions

• The Super User

3

.bash_profile and .bashrc

• Every time you log in to bash, the commands in
~/.bash_profile are run

 you can put any common startup commands you want into this file

 useful for setting up aliases and other settings for remote login

• Every time you launch a non-login bash terminal, the commands in
~/.bashrc are run

 useful for setting up persistent commands for local shell usage, or
when launching multiple shells

 often, .bash_profile is configured to also run .bashrc, but not
always

Note: a dot (.) in front of a filename indicates a normally hidden file,
use ls –a to see

4

Exercise:Edit your .bashrc

• Exercise : Make it so that our attu alias from earlier becomes
persistent, so that it will work every time we run a shell.

• Exercise : Make it so that whenever you try to delete or overwrite a
file during a move/copy, you will be prompted for confirmation first.

5

 .plan

• Another fun settings file

• Stored in your home directory

• Contains information you’d like others to be able to see

 is displayed when the finger protocol is run

• Exercise: create a quick .plan file, and make sure it works with
finger

6

Users

Unix/Linux is a multi-user operating system.

• Every program/process is run by a user.

• Every file is owned by a user.

• Every user has a unique integer ID number (UID).

• Different users have different access permissions, allowing user to:
 read or write a given file

 browse the contents of a directory

 execute a particular program

 install new software on the system

 change global system settings

 ...

7

People & Permissions

• People: each user fits into only one of three permission sets:

 owner (u) – if you create the file you are the owner, the owner can also
be changed

 group (g) – by default a group (e.g. ugrad_cs, fac_cs) is associated with
each file

 others (o) – everyone other than the owner and people who are in the
particular group associated with the file

• Permissions: For regular files, permissions work as follows:

 read (r) – allows file to be open and read

 write (w) – allows contents of file to be modified or truncated

 execute (x) – allows the file to be executed (use for executables or
scripts)

* Directories also have permissions (covered later). Permission to delete
or rename a file is controlled by the permission of its parent directory.

8

Groups

• group: A collection of users, used as a target of permissions.

 a group can be given access to a file or resource

 a user can belong to many groups

 see who’s in a group using grep <groupname> /etc/group

• Every file has an associated group.

 the owner of a file can grant permissions to the group

• Every group has a unique integer ID number (GID).

• Exercise: create a file, see its default group, and change it

command description

 groups list the groups to which a user belongs

 chgrp change the group associated with a file

9

File permissions

• types : read (r), write (w), execute (x)
• people : owner (u), group (g), others (o)

 on Windows, .exe files are executable programs;
on Linux, any file with x permission can be executed

 permissions are shown when you type ls -l

 is it a directory?
 owner (u)
 group (g)
 others (o)

 drwxrwxrwx

command description

 chmod change permissions for a file

 umask set default permissions for new files

10

File permissions Examples

Permissions are shown when you type ls –l:

-rw-r--r-- 1 rea fac_cs 55 Oct 25 12:02 temp1.txt
-rw--w---- 1 rea orca 235 Oct 25 11:06 temp2.txt

temp1.txt:
 owner of the file (rea) has read & write permission
 group (fac_cs) members have read permission
 others have read permission

temp2.txt:
 owner of the file (rea) has read & write permission
 group (orca) members have write permission (but no read

permission – can add things to the file but cannot cat it)
 others have no permissions (cannot read or write)

11

Changing permissions

• letter codes: chmod who(+-)what filename

 chmod u+rw myfile.txt (allow owner to read/write)

 chmod +x banner (allow everyone to execute)

 chmod ug+rw,o-rwx grades.xls (owner/group can read and

 note: -R for recursive write; others nothing)

• octal (base-8) codes: chmod NNN filename

 three numbers between 0-7, for owner (u), group (g), and others (o)

 each gets +4 to allow read, +2 for write, and +1 for execute

 chmod 600 myfile.txt (owner can read/write (rw))

 chmod 664 grades.dat (owner rw; group rw; other r)

 chmod 751 banner (owner rwx; group rx; other x)

12

chmod and umask

chmod u+rw myfile.txt (allow owner to read/write)

 Note: leaves “group” and “other” permissions as they were.

chmod 664 grades.dat (owner rw; group rw; other r)

 Note: sets permissions for “owner”, “group” and “other” all at once.

umask – returns the “mask” in use, determines the default permissions set on
files and directories I create. Can also be used to set that mask.

% umask

0022

% touch silly.txt

% ls –l silly.txt

-rw-r--r-- 1 rea fac_cs 0 Oct 25 12:04 silly.txt

0022 means that files I create will have group and other “write bits” turned off:

1) Take the bitwise complement of 0228 -> 7558

2) AND with 6668 for files (7778 for directories) : 7558 = 111 101 101

 6668 = 110 110 110

 110 100 100 = 6448

 (owner rw, group r, other r)

13

Exercises

• Change the permissions on myfile.txt so that:

 Others cannot read it.

 Group members can execute it.

 Others cannot read or write it.

 Group members & Others can read and write it.

 Everyone has full access.

• Now try this:

 Deny all access from everyone.

• !!! is it dead?

14

Exercises (Solutions)

• Change the permissions on myfile.txt so that:

 Others cannot read it. chmod o-r myfile.txt

 Group members can execute it. chmod g+x myfile.txt

 Others cannot read or write it. chmod o-rw myfile.txt

 Group members & Others

can read and write it. chmod go+rw myfile.txt

 Everyone has full access. chmod ugo+rwx myfile.txt

• Now try this:

 Deny all access from everyone. chmod ugo-rwx myfile.txt
• !!! is it dead?

• I own this file. Can I change the Owner’s (u) permissions?

15

Directory Permissions

• Read, write, execute a directory?

 Read - permitted to read the contents of directory (view files and sub-
directories in that directory, run ls on the directory)

 Write - permitted to write in to the directory (add, delete, or rename &
create files and sub-directories in that directory)

 Execute - permitted to enter into that directory (cd into that directory)

• It is possible to have any combination of these permissions:

Try these:

 Have read permission for a directory, but NOT execute permission

• ????

 Have execute permission for a directory, but NOT read permission

• ???

*Note: permissions assigned to a directory are not inherited by the files within that directory

16

Directory Permissions

• Read, write, execute a directory?

 Read - permitted to read the contents of directory (view files and sub-
directories in that directory, run ls on the directory)

 Write - permitted to write in to the directory (add, delete, or rename &
create files and sub-directories in that directory)

 Execute - permitted to enter into that directory (cd into that directory)

• It is possible to have any combination of these permissions:

 Have read permission for a directory, but NOT execute permission

• Can do an ls from outside of the directory but cannot cd into it, cannot
access files in the directory

 Have execute permission for a directory, but NOT read permission

• Can cd into the directory, can access files in that directory if you already
know their name, but cannot do an ls of the directory

*Note: permissions assigned to a directory are not inherited by the files within that directory

17

Permissions don’t travel

• Note in the previous examples that permissions are separate from
the file

 If I disable read access to a file, I can still look at its permissions

 If I upload a file to a directory, its permissions will be the same as if I
created a new file locally

• Takeaway: permissions, users, and groups reside on the particular
machine you’re working on. If you email a file or throw it on a
thumbdrive, no permissions information is attached.

 Why? Is this a gaping security hole?

18

Lets combine things

• Say I have a directory structure, with lots of .txt files scattered

 I want to remove all permissions for Others on all of the text files

 First attempt:

•chmod –R o-rwx *.txt

• What happened?

 Try and fix this using find and xargs!

•find –name "*.txt"

•find –name "*.txt" | xargs chmod o-rwx

19

Super-user (root)

• super-user: An account used for system administration.

 has full privileges on the system

 usually represented as a user named root

• Most users have more limited permissions than root

 protects system from viruses, rogue users, etc.

 if on your own box, why ever run as a non-root user?

• Example: Install the sun-java6-jdk package on Ubuntu.

 sudo apt-get install sun-java6-jdk

command description

 sudo run a single command with root privileges (prompts for password)

 su start a shell with root privileges (so multiple commands can be run)

20

Playing around with power…

Courtesy XKCD.com

21

Playing around with power…

• Create a file, remove all permissions

 Now, login as root and change the owner and group to root

 Bwahaha, is it a brick in a user’s directory?

• Different distributions have different approaches

 Compare Fedora to Ubuntu in regards to sudo and su…

• Power can have dangerous consequences

 rm * might be just what you want to get rid of everything in a local
directory

 but what if you happened to be in /bin… and you were running as
root…

22

Wrap-up discussion

• What do you think of the permissions model in *nix?

 How does it compare to your experience of other OS’s?

 What are it’s strengths?

 Are there any limitations? Can you think of a scenario of access rights
that this approach doesn’t easily facilitate?

 Additional info: ACL vs. Capabilities

• Access Control Lists

 Like what we just looked at – each file has a list of who can do what

• Capabilities

 Different approach using capabilities, or “keys”

 Principle of least privilege, keys are communicable

 Not a focus point, but more info online if you’re interested

