CSE 390a Lecture 1

introduction to Linux/Unix environment

slides created by Marty Stepp, modified by Jessica Miller & Ruth Anderson http://www.cs.washington.edu/390a/

Lecture summary

- Course introduction and syllabus
- Unix and Linux operating system
- Introduction to Bash shell

Course Staff

- Me:
 - Ruth Anderson, rea@cs
 - Office hours:
 - Mon 2:00-3:00pm in CSE 360,
 - Wed 3:30-4:30pm in CSE 022,
 - and by appointment

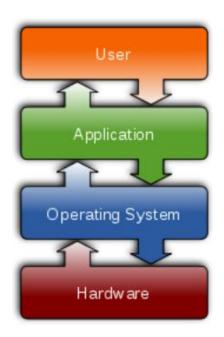
Course Introduction

CSE390a

- Collection of tools and topics not specifically addressed in other courses that CSE majors should know
- CSE 351 may be the first course you take that uses Linux heavily
 - *nix command line interface (CLI), Shell scripting, compilation tools (makefiles), version control...
- Credit / No Credit course, determined by short weekly assignments and a "final" assignment

Bring to Class next week:

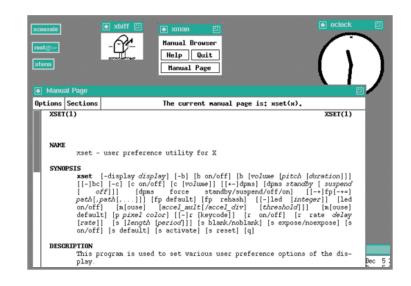
- Name
- Email address
- Year (1,2,3,4)
- Major
- Hometown
- Interesting Fact or what I did over break.

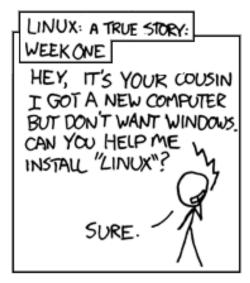

Operating systems

• What is an OS? Why have one?

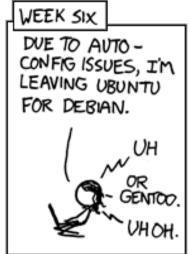
What is a Kernel?

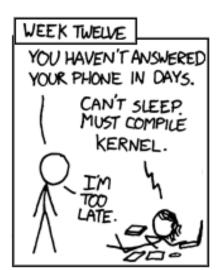
Operating systems


- operating system: Manages activities and resources of a computer.
 - software that acts as an interface between hardware and user
 - provides a layer of abstraction for application developers
- features provided by an operating system:
 - ability to execute programs (and multi-tasking)
 - memory management (and virtual memory)
 - file systems, disk and network access
 - an interface to communicate with hardware
 - a user interface (often graphical)

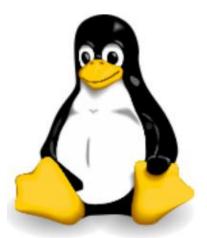

• kernel: The lowest-level core of an operating system.

Unix


- brief history:
 - Multics (1964) for mainframes
 - Unix (1969)
 - K&R
 - Linus Torvalds and Linux (1992)
- key Unix ideas:
 - written in a high-level language (C)
 - virtual memory
 - hierarchical file system; "everything" is a file
 - lots of small programs that work together to solve larger problems
 - security, users, access, and groups
 - human-readable documentation included



On to Linux



PARENTS: TALK TO YOUR KIDS ABOUT LINUX...
BEFORE SOMEBODY ELSE DOES.

Courtesy XKCD.com

Linux

- Linux: A kernel for a Unix-like operating system.
 - commonly seen/used today in servers, mobile/embedded devices, ...
- GNU: A "free software" implementation of many Unix-like tools
 - many GNU tools are distributed with the Linux kernel
- distribution: A pre-packaged set of Linux software.
 - examples: Ubuntu, Fedora
- key features of Linux:
 - open source software: source can be downloaded
 - free to use
 - constantly being improved/updated by the community

Linux Desktop

- X-windows
- window managers
- desktop environments
 - Gnome
 - KDE
- How can I try out Linux?
 - CSE basement labs
 - at home (install Linux via Live CD, virtual machine, etc.)
 - attu shared server
- The Linux help philosophy: "RTFM" (Read the F***ing Manual)

Things you can do in Linux

- Load the course web site in a browser
- Install and play games
- Play MP3s
- Edit photos
- IM, Skype

Shell

- **shell**: An interactive program that uses user input to manage the execution of other programs.
 - A command processor, typically runs in a text window.
 - User types commands, the shell runs the commands
 - Several different shell programs exist:
 - bash: the default shell program on most Linux/Unix systems
 - We will use bash
 - Other shells: Bourne, csh, tsch
- Why should I learn to use a shell when GUIs exist?

Why use a shell?

- Why should I learn to use a shell when GUIs exist?
 - faster
 - work remotely
 - programmable
 - customizable
 - repeatable

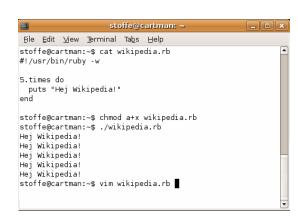
Shell commands

command	description
exit	logs out of the shell
ls	lists files in a directory
pwd	outputs the current working directory
cd	changes the working directory
man	brings up the manual for a command

```
$ pwd
/homes/iws/rea
$ cd CSE390
$ ls
file1.txt file2.txt
$ ls -1
-rw-r--r-- 1 rea fac_cs 0 2012-03-29 17:45 file1.txt
-rw-r--r-- 1 rea fac_cs 0 2012-03-29 17:45 file2.txt
$ cd ..
$ man ls
$ exit
```

Relative directories

directory	description
•	the directory you are in ("working directory")
• •	the parent of the working directory (/ is grandparent, etc.)
~	your home directory (on many systems, this is /home/username)
~username	username's home directory
~/Desktop	your desktop


Directory commands

command	description
ls	list files in a directory
pwd	output the current working directory
cd	change the working directory
mkdir	create a new directory
rmdir	delete a directory (must be empty)

- some commands (cd, exit) are part of the shell ("builtins")
- others (ls, mkdir) are separate programs the shell runs

Shell commands

- many accept arguments or parameters
 - example: cp (copy) accepts a source and destination file path
- a program uses 3 streams of information:
 - stdin, stdout, stderr (standard in, out, error)
- input: comes from user's keyboard
- output: goes to console
- errors can also be printed (by default, sent to console like output)
- parameters vs. input
 - parameters: before Enter is pressed; sent in by shell
 - input: after Enter is pressed; sent in by user

Command-line arguments

- most options are a followed by a letter such as -c
 - some are longer words preceded by two signs, such as --count
- options can be combined: ls -l -a -r can be ls -lar
- many programs accept a --help or -help option to give more information about that command (in addition to man pages)
 - or if you run the program with no arguments, it may print help info
- for many commands that accept a file name argument, if you omit the parameter, it will read from standard input (your keyboard)

Shell/system commands

command	description
man or info	get help on a command
clear	clears out the output from the console
exit	exits and logs out of the shell

command	description
date	output the system date
cal	output a text calendar
uname	print information about the current system

 "man pages" are a very important way to learn new commands man 1s
 man man

File commands

command	description
ср	copy a file
m∨	move or rename a file
rm	delete a file
touch	create a new empty file, or update its last-modified time stamp

- caution: the above commands do not prompt for confirmation
 - easy to overwrite/delete a file; this setting can be overridden (how?)
- Exercise: Given several albums of .mp3 files all in one folder, move them into separate folders by artist.
- Exercise: Modify a .java file to make it seem as though you finished writing it on Dec 28 at 4:56am.

Exercise Solutions

- caution: the cp, rm, mv commands do not prompt for confirmation
 - easy to overwrite/delete a file; this setting can be overridden (how?)
 - Use "-i" with the command, "interactive" to prompt before overwrite
- Exercise: Given several albums of .mp3 files all in one folder, move them into separate folders by artist.
 - mkdir U2
 - mkdir PSY
 - mkdir JustinBieber
 - mv GangnamStyle.mp3 PSY/
 - mv Pride.mp3 U2/
- Exercise: Modify a .java file to make it seem as though you finished writing it on Dec 28 at 4:56am.
 - touch -t 201212280456 Hello.java