
1

CSE 390
Lecture 7

Large Program Management: Make; Ant

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/390a/

http://www.cs.washington.edu/303/

2

Motivation

• single-file programs do not work well when code gets large

 compilation can be slow

 hard to collaborate between multiple programmers

 more cumbersome to edit

• larger programs are split into multiple files

 each file represents a partial program or module

 modules can be compiled separately or together

 a module can be shared between multiple programs

• but now we have to deal with all these files just to build our
program…

3

Compiling: Java

• What happens when you compile a Java program?

 $ javac Example.java Example.class

Answer: It produces a .class file.

 Example.java is compiled to create Example.class

• How do you run this Java program?

 $ java Example

produces

4

Compiling: C

• To compile a C program called source.c, type:

gcc -o target source.c target

 (where target is the name of the executable program to build)

 the compiler builds an actual executable file (not a .class like Java)

 Example: gcc -o hi hello.c

Compiles the file hello.c into an executable called “hi”

• To run your program, just execute that file:

 Example: ./hi

command description

 gcc GNU C compiler

produces

5

Object files (.o)

• A .c file can also be compiled into an object (.o) file with -c :

$ gcc -c part1.c part1.o
$ ls
part1.c part1.o part2.c

 a .o file is a binary “blob” of compiled C code that cannot be directly
executed, but can be directly linked into a larger executable later

• You can compile and link a mixture of .c and .o files:

$ gcc -o myProgram part1.o part2.c myProgram

Avoids recompilation of unchanged partial program files (e.g. part1.o)

produces

produces

6

Header files (.h)

• header : A C file whose only purpose is to be #included
(#include is like java import statement)
 generally a filename with the .h extension
 holds shared variables, types, and function declarations
 similar to a java interface: contains function declarations but not

implementations

• key ideas:
 every name.c intended to be a module (not a stand alone program)

has a name.h
 name.h declares all global functions/data of the module
 other .c files that want to use the module will #include name.h

7

Compiling large programs

• Compiling multi-file programs repeatedly is cumbersome:

$ gcc -o myprogram file1.c file2.c file3.c

• Retyping the above command is wasteful:

 for the developer (so much typing)

 for the compiler (may not need to recompile all; save them as .o)

• Improvements:

 use up-arrow or history to re-type compilation command for you

 use an alias or shell script to recompile everything

 use a system for compilation/build management, such as make

8

make

• make : A utility for automatically compiling ("building") executables
and libraries from source code.

 a very basic compilation manager

 often used for C programs, but not language-specific

 primitive, but still widely used due to familiarity, simplicity

 similar programs: ant, maven, IDEs (Eclipse), ...

• Makefile : A script file that defines rules for what must be compiled
and how to compile it.

 Makefiles describe which files depend on which others, and how to
create / compile / build / update each file in the system as needed.

9

Dependencies

• dependency : When a file relies on the contents of another.
 can be displayed as a dependency graph
 to build main.o, we need data.h, main.c, and io.h
 if any of those files is updated, we must rebuild main.o
 if main.o is updated, we must update project1

10

make Exercise

• figlet : program for displaying large ASCII text (like banner).

 http://freecode.com/projects/figlet

• Download a piece of software and compile it with make:

 download .tar.gz file

 un-tar it

 (optional) look at README file to see how to compile it

 (sometimes) run ./configure

• for cross-platform programs; sets up make for our operating system

 run make to compile the program

 execute the program

http://freecode.com/projects/figlet

11

Makefile rule syntax
target : source1 source2 ... sourceN
 command
 command
 ...
 source1 through sourceN are the dependencies for building
target

 Make will execute the commands in order

Example:

 myprogram : file1.c file2.c file3.c
 gcc -o myprogram file1.c file2.c file3.c

 this is a tab THIS IS NOT spaces!!

 The command line must be indented by a single tab

• not by spaces; NOT BY SPACES! SPACES WILL NOT WORK!

12

Running make

$ make target

 uses the file named Makefile in current directory

 Finds a rule in Makefile for building target and follows it

• if the target file does not exist, or if it is older than any of its sources,
its commands will be executed

• variations:

$ make

 builds the first target in the Makefile

$ make -f makefilename
$ make -f makefilename target

 uses a makefile other than Makefile

13

Making a Makefile

• Exercise: Create a basic Makefile to build {hello.c, file2.c, file3.c}

 Basic works, but is wasteful. What happens if we change file2.c?

• everything is recompiled. On a large project, this could be a huge waste

14

Making a Makefile

courtesy XKCD

15

Making a Makefile

• Exercise: Create a basic Makefile to build {hello.c, file2.c, file3.c}

 Basic works, but is wasteful. What happens if we change file2.c?

• everything is recompiled. On a large project, this could be a huge waste

 Augment the makefile to make use of precompiled object files and
dependencies

• by adding additional targets, we can avoid unnecessary re-compilation

16

Rules with no dependencies
myprog: file1.o file2.o file3.o
 gcc -o myprog file1.o file2.o file3.o

clean:
 rm file1.o file2.o file3.o myprog

• make assumes that a rule's command will build/create its target

 but if your rule does not actually create its target, the target will still
not exist the next time, so the rule will always execute its commands
(e.g. clean above)

 make clean is a convention for removing all compiled files

17

Rules with no commands
all: myprog myprog2

myprog: file1.o file2.o file3.o
 gcc -o myprog file1.o file2.o file3.o

myprog2: file4.c
 gcc -o myprog2 file4.c
...

• all rule has no commands, but depends on myprog and myprog2

 typing make all will ensure that myprog, myprog2 are up to date

 all rule often put first, so that typing make will build everything

• Exercise: add “clean” and “all” rules to our hello Makefile

18

Variables
NAME = value (declare)
$(NAME) (use)

Example Makefile:

OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog

$(PROGRAM): $(OBJFILES)
 gcc -o $(PROGRAM) $(OBJFILES)

clean:
 rm $(OBJFILES) $(PROGRAM)

• variables make it easier to change one option throughout the file

 also makes the makefile more reusable for another project

19

More variables
Example Makefile:

OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog
CC = gcc
CCFLAGS = -g -Wall

$(PROGRAM): $(OBJFILES)
 $(CC) $(CCFLAGS) -o $(PROGRAM) $(OBJFILES)

• many makefiles create variables for the compiler, flags, etc.

 this can be overkill, but you will see it "out there"

20

Special variables

$@ the current target file

$^ all sources listed for the current target

$< the first (left-most) source for the current target

 (there are other special variables*)

Example Makefile:
myprog: file1.o file2.o file3.o
 gcc $(CCFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h
 gcc $(CCFLAGS) -c $<

• Exercise: change our hello Makefile to use variables for the object
files and the name of the program

*http://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

http://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

21

Auto-conversions

• Rather than specifying individually how to convert every .c file into
its corresponding .o file, you can set up an implicit target:

conversion from .c to .o Makefile comments!
.c.o:
 gcc $(CCFLAGS) -c $<

 "To create filename.o from filename.c, run gcc -g -Wall -c filename.c"

• For making an executable (no extension), simply write .c :
.c:
 gcc $(CCFLAGS) -o $@ $<

• Exercise: simplify our hello Makefile with a single .c.o conversion

22

What about Java?

• Create Example.java that uses a class MyValue in MyValue.java

 Compile Example.java and run it

• javac automatically found and compiled MyValue.java

 Now, alter MyValue.java

• Re-compile Example.java… does the change we made to MyValue
propagate?

• Yep! javac follows similar timestamping rules as the makefile
dependencies. If it can find both a .java and a .class file, and the .java is
newer than the .class, it will automatically recompile

• But be careful about the depth of the search...

• But, this is still a simplistic feature. Ant is a commonly used build
tool for Java programs giving many more build options.

23

Ant

• Similar idea to Make

• Ant uses a build.xml file instead of a Makefile
<project>
 <target name=“name”>
 tasks
 </target>

 <target name=“name”>
 tasks
 </target>

</project>

• Tasks can be things like:

 <javac … />

 <mkdir … />

 <delete … />

 A whole lot more…http://ant.apache.org/manual/tasksoverview.html

http://ant.apache.org/manual/tasksoverview.html

24

Ant Example

• Create an Ant file to compile our Example.java program

• To run ant (assuming build.xml is in the current directory):

$ ant targetname

• For example, if you have targets called clean and compile:

$ ant clean

$ ant compile

Refer to: http://ant.apache.org/manual/tasksoverview.html

for more information on Ant tasks and their attributes.

http://ant.apache.org/manual/tasksoverview.html

25

Example build.xml file

<!-- Example build.xml file -->

<!-- Homer Simpson, cse390a -->

<project>

 <target name="clean">

 <delete dir="build"/>

 </target>

 <target name="compile">

 <mkdir dir="build/classes"/>

 <javac srcdir="src" destdir="build/classes"/>

 </target>

</project>

26

Automated Build Systems

• Fairly essential for any large programming project

 Why? Shell scripts instead? What are these tools aiming to do?

 Is timestamping the right approach for determining “recompile”?

 What about dependency determination?

 What features would you want from an automated build tool?

 Should “building” your program also involve non-syntactic checking?

• Ant can run JUnit tests…

