
1

CSE 390a
Lecture 3

Multi-user systems; remote login; editors; users/groups;
permissions

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson
http://www.cs.washington.edu/390a/

http://www.cs.washington.edu/390a/

2

Lecture summary
• Connecting to remote servers (attu)
 multi-user environments

• Text editors

• User accounts and groups

• File permissions

• The Super User

3

Connecting with ssh

• Linux/Unix are built to be used in multi-user environments where
several users are logged in to the same machine at the same time
 users can be logged in either locally or via the network

• You can connect to other Linux/Unix servers with ssh
 once connected, you can run commands on the remote server
 other users might also be connected; you can interact with them
 can connect even from other operating systems

command description

 ssh open a shell on a remote server

4

The attu server
• attu : The UW CSE department's shared Linux server

• connect to attu by typing:

 ssh attu.cs.washington.edu

 (or ssh username@attu.cs.washington.edu if your Linux
system's user name is different than your CSE user name)

• Note: There are several computers that respond as attu (to spread load), so if you want to
be on the same machine as your friend, you may need to connect to attu2, attu3, etc.

5

Multi-user environments

• Exercise : Connect to attu, and send somebody else a message.

command description

 whoami outputs your username

 passwd changes your password

 hostname outputs this computer's name/address

 w or finger see info about people logged in to this server

 write send a message to another logged in user

6

Network commands

command description

 links or lynx text-only web browsers (really!)

 ssh connect to a remote server

 sftp or scp transfer files to/from a remote server
(after starting sftp, use get and put commands)

 wget download from a URL to a file

 curl download from a URL and output to console

 alpine, mail text-only email programs

7

Text editors

• you cannot run graphical programs when connected to attu (yet)
 so if you want to edit documents, you need to use a text-only editor

• most advanced Unix/Linux users learn emacs or vi
 these editors are powerful but complicated and hard to learn
 we recommend the simpler nano (hotkeys are shown on screen)

command description

 pico or nano simple but crappy text editors (recommended)

 emacs complicated text editor

 vi or vim complicated text editor

8

Mounting remote files

command description

sshfs mount and interact with remote directories and files

• An alternate usage model to remotely connecting to servers is
mounting remote directories and files and work on them locally
 once mounted, use remote directories and files as if they were local

• To mount a remote directory
 create a local directory to mount to
 mkdir csehomedir
 mount your remote files on your local system
 sshfs username@attu.cs.washington.edu:/homes/iws/username csehomedir/

9

Aliases

alias name=command
 must wrap the command in quotes if it contains spaces

• Example: When I type q , I want it to log me out of my shell.
• Example: When I type ll , I want it to list all files in long format.

alias q=exit
alias ll="ls -la"

• Exercise : Make it so that typing woman runs man.
• Exercise : Make it so that typing attu connects me to attu.

command description

 alias assigns a pseudonym to a command

10

Users
Unix/Linux is a multi-user operating system.

• Every program/process is run by a user.
• Every file is owned by a user.
• Every user has a unique integer ID number (UID).

• Different users have different access permissions, allowing user to:
 read or write a given file
 browse the contents of a directory
 execute a particular program
 install new software on the system
 change global system settings
 ...

11

People & Permissions
• People: each user fits into only one of three permission sets:
 owner (u) – if you create the file you are the owner, the owner can also

be changed
 group (g) – by default a group (e.g. ugrad_cs, fac_cs) is associated with

each file
 others (o) – everyone other than the owner and people who are in the

particular group associated with the file
• Permissions: For regular files, permissions work as follows:
 read (r) – allows file to be open and read
 write (w) – allows contents of file to be modified or truncated
 execute (x) – allows the file to be executed (use for executables or

scripts)
* Directories also have permissions (covered later). Permission to delete

or rename a file is controlled by the permission of its parent directory.

12

Groups

• group: A collection of users, used as a target of permissions.
 a group can be given access to a file or resource
 a user can belong to many groups
 see who’s in a group using grep <groupname> /etc/group

• Every file has an associated group.
 the owner of a file can grant permissions to the group

• Every group has a unique integer ID number (GID).
• Exercise: create a file, see its default group, and change it

command description

 groups list the groups to which a user belongs

 chgrp change the group associated with a file

13

File permissions

• types : read (r), write (w), execute (x)
• people : owner (u), group (g), others (o)

 on Windows, .exe files are executable programs;
on Linux, any file with x permission can be executed

 permissions are shown when you type ls -l

 is it a directory?
 owner (u)
 group (g)
 others (o)

 drwxrwxrwx

command description
 chmod change permissions for a file
 umask set default permissions for new files

14

File permissions Examples
Permissions are shown when you type ls –l:

-rw-r--r-- 1 rea fac_cs 55 Oct 25 12:02 temp1.txt
-rw--w---- 1 rea orca 235 Oct 25 11:06 temp2.txt

temp1.txt:
 owner of the file (rea) has read & write permission
 group (fac_cs) members have read permission
 others have read permission

temp2.txt:
 owner: ???
 group: ???
 others: ???

15

File permissions Examples
Permissions are shown when you type ls –l:

-rw-r--r-- 1 rea fac_cs 55 Oct 25 12:02 temp1.txt
-rw--w---- 1 rea orca 235 Oct 25 11:06 temp2.txt

temp1.txt:
 owner of the file (rea) has read & write permission
 group (fac_cs) members have read permission
 others have read permission

temp2.txt:
 owner of the file (rea) has read & write permission
 group (orca) members have write permission (but no read

permission – can add things to the file but cannot cat it)
 others have no permissions (cannot read or write)

16

Changing permissions
• letter codes: chmod who(+-)what filename

 chmod u+rw myfile.txt (allow owner to read/write)
 chmod +x banner ???
 chmod ug+rw,o-rwx grades.xls ???
 note: -R for recursive

• octal (base-8) codes: chmod NNN filename
 three numbers between 0-7, for owner (u), group (g), and others (o)
 each gets +4 to allow read, +2 for write, and +1 for execute

 chmod 600 myfile.txt
 chmod 664 grades.dat
 chmod 751 banner

17

Changing permissions
• letter codes: chmod who(+-)what filename

 chmod u+rw myfile.txt (allow owner to read/write)
 chmod +x banner (allow everyone to execute)
 chmod ug+rw,o-rwx grades.xls (owner/group can read and
 note: -R for recursive write; others nothing)

• octal (base-8) codes: chmod NNN filename
 three numbers between 0-7, for owner (u), group (g), and others (o)
 each gets +4 to allow read, +2 for write, and +1 for execute

 chmod 600 myfile.txt (owner can read/write (rw))
 chmod 664 grades.dat (owner rw; group rw; other r)
 chmod 751 banner (owner rwx; group rx; other x)

18

chmod and umask
chmod u+rw myfile.txt (allow owner to read/write)
 Note: leaves “group” and “other” permissions as they were.

chmod 664 grades.dat (owner rw; group rw; other r)
 Note: sets permissions for “owner”, “group” and “other” all at once.

umask – returns the “mask” in use, determines the default permissions set on
files and directories I create. Can also be used to set that mask.

% umask
0022
% touch silly.txt
% ls –l silly.txt
-rw-r--r-- 1 rea fac_cs 0 Oct 25 12:04 silly.txt

0022 means that files I create will have group and other “write bits” turned off:
1) Take the bitwise complement of 0228 -> 7558
2) AND with 6668 for files (7778 for directories) : 7558 = 111 101 101
 6668 = 110 110 110
 110 100 100 = 6448

 (owner rw, group r, other r)

19

Exercises
• Change the permissions on myfile.txt so that:
 Others cannot read it.
 Group members can execute it.

 Others cannot read or write it.

 Group members & Others can read and write it.
 Everyone has full access.

• Now try this:
 Deny all access from everyone.

• !!! is it dead?

20

Exercises (Solutions)
• Change the permissions on myfile.txt so that:
 Others cannot read it. chmod o-r myfile.txt
 Group members can execute it. chmod g+xmyfile.txt
 Others cannot read or write it. chmod o-rw myfile.txt
 Group members & Others

can read and write it. chmod go+rw myfile.txt
 Everyone has full access. chmod ugo+rwx myfile.txt

• Now try this:
 Deny all access from everyone. chmod ugo-rwx myfile.txt

• !!! is it dead?
• I own this file. Can I change the Owner’s (u) permissions?

21

Directory Permissions
• Read, write, execute a directory?
 Read - permitted to read the contents of directory (view files and sub-

directories in that directory, run ls on the directory)
 Write - permitted to write in to the directory (add, delete, or rename &

create files and sub-directories in that directory)
 Execute - permitted to enter into that directory (cd into that directory)

• It is possible to have any combination of these permissions:
Try these:
 Have read permission for a directory, but NOT execute permission

• ????
 Have execute permission for a directory, but NOT read permission

• ???

*Note: permissions assigned to a directory are not inherited by the files within that directory

22

Directory Permissions
• Read, write, execute a directory?
 Read - permitted to read the contents of directory (view files and sub-

directories in that directory, run ls on the directory)
 Write - permitted to write in to the directory (add, delete, or rename &

create files and sub-directories in that directory)
 Execute - permitted to enter into that directory (cd into that directory)

• It is possible to have any combination of these permissions:
 Have read permission for a directory, but NOT execute permission

• Can do an ls from outside of the directory but cannot cd into it, cannot
access files in the directory

 Have execute permission for a directory, but NOT read permission
• Can cd into the directory, can access files in that directory if you already

know their name, but cannot do an ls of the directory

*Note: permissions assigned to a directory are not inherited by the files within that directory

23

Permissions don’t travel
• Note in the previous examples that permissions are separate from

the file
 If I disable read access to a file, I can still look at its permissions
 If I upload a file to a directory, its permissions will be the same as if I

created a new file locally

• Takeaway: permissions, users, and groups reside on the particular
machine you’re working on. If you email a file or throw it on a
thumbdrive, no permissions information is attached.
 Why? Is this a gaping security hole?

24

Let’s combine things
• Say I have a directory structure, with lots of .txt files scattered
 I want to remove all permissions for Others on all of the text files
 First attempt:

•chmod –R o-rwx *.txt
• What happened?

25

Let’s combine things
• Say I have a directory structure, with lots of .txt files scattered
 I want to remove all permissions for Others on all of the text files
 First attempt:

•chmod –R o-rwx *.txt
• What happened?

 Try and fix this using find and xargs!

•find –name "*.txt"
•find –name "*.txt" | xargs chmod o-rwx

26

Super-user (root)

• super-user: An account used for system administration.
 has full privileges on the system
 usually represented as a user named root

• Most users have more limited permissions than root
 protects system from viruses, rogue users, etc.
 if on your own box, why ever run as a non-root user?

• Example: Install the sun-java6-jdk package on Ubuntu.
 sudo apt-get install sun-java6-jdk

command description
 sudo run a single command with root privileges (prompts for password)

 su start a shell with root privileges (so multiple commands can be run)

27

Playing around with power…

Courtesy XKCD.com

28

Playing around with power…
• Create a file, remove all permissions
 Now, login as root and change the owner and group to root
 Bwahaha, is it a brick in a user’s directory?

• Different distributions have different approaches
 Compare Fedora to Ubuntu in regards to sudo and su…

• Power can have dangerous consequences
 rm * might be just what you want to get rid of everything in a local

directory
 but what if you happened to be in /bin… and you were running as

root…

29

Wrap-up discussion
• What do you think of the permissions model in *nix?
 How does it compare to your experience of other OS’s?
 What are it’s strengths?
 Are there any limitations? Can you think of a scenario of access rights

that this approach doesn’t easily facilitate?

 Additional info: ACL vs. Capabilities
• Access Control Lists
 Like what we just looked at – each file has a list of who can do what

• Capabilities
 Different approach using capabilities, or “keys”
 Principle of least privilege, keys are communicable
 Not a focus point, but more info online if you’re interested

	CSE 390a�Lecture 3
	Lecture summary
	Connecting with ssh
	The attu server
	Multi-user environments
	Network commands
	Text editors
	Mounting remote files
	Aliases
	Users
	People & Permissions
	Groups
	File permissions
	File permissions Examples
	File permissions Examples
	Changing permissions
	Changing permissions
	chmod and umask
	Exercises
	Exercises (Solutions)
	Directory Permissions
	Directory Permissions
	Permissions don’t travel
	Let’s combine things
	Let’s combine things
	Super-user (root)
	Playing around with power…
	Playing around with power…
	Wrap-up discussion

