
2/21/2012

1

1

CSE 390
Lecture 8

Large Program Management: Make; Ant

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/390a/

2

Motivation
• single-file programs do not work well when code gets large

� compilation can be slow

� hard to collaborate between multiple programmers

� more cumbersome to edit

• larger programs are split into multiple files

� each file represents a partial program or module

� modules can be compiled separately or together

� a module can be shared between multiple programs

• but now we have to deal with all these files just to build our

program…

3

Compiling: Java
• What happens when you compile a Java program?

$ javac Example.java Example.class

Answer: It produces a .class file.

� Example.java is compiled to create Example.class

• How do you run this Java program?

$ java Example

produces

4

Compiling: C

• To compile a C program called source.c, type:

gcc -o target source.c target

(where target is the name of the executable program to build)

� the compiler builds an actual executable file (not a .class like Java)

� Example: gcc -o hi hello.c

Compiles the file hello.c into an executable called “hi”

• To run your program, just execute that file:

� Example: ./hi

command description

gcc GNU C compiler

produces

5

Object files (.o)
• A .c file can also be compiled into an object (.o) file with -c :

$ gcc -c part1.c part1.o

$ ls

part1.c part1.o part2.c

� a .o file is a binary “blob” of compiled C code that cannot be directly

executed, but can be directly “inserted” into a larger executable later

• You can compile a mixture of .c and .o files:

$ gcc -o combined part1.o part2.c combined

Avoids recompilation of unchanged partial program files (e.g. part1.o)

produces

produces

6

Header files (.h)
• header : A C file whose only purpose is to be #included (#include is

like java import statement)

� generally a filename with the .h extension

� holds shared variables, types, and function declarations

� similar to a java interface: contains function declarations but not
implementations

• key ideas:

� every name.c intended to be a module (not a stand alone program)
has a name.h

� name.h declares all global functions/data of the module

� other .c files that want to use the module will #include name.h

2/21/2012

2

7

Compiling large programs
• Compiling multi-file programs repeatedly is cumbersome:

$ gcc -o myprogram file1.c file2.c file3.c

• Retyping the above command is wasteful:

� for the developer (so much typing)

� for the compiler (may not need to recompile all; save them as .o)

• Improvements:

� use up-arrow or history to re-type compilation command for you

� use an alias or shell script to recompile everything

� use a system for compilation/build management, such as make

8

make

• make : A utility for automatically compiling ("building") executables

and libraries from source code.

� a very basic compilation manager

� often used for C programs, but not language-specific

� primitive, but still widely used due to familiarity, simplicity

� similar programs: ant, maven, IDEs (Eclipse), ...

• Makefile : A script file that defines rules for what must be compiled

and how to compile it.

� Makefiles describe which files depend on which others, and how to

create / compile / build / update each file in the system as needed.

9

Dependencies
• dependency : When a file relies on the contents of another.

� can be displayed as a dependency graph

� to build main.o, we need data.h, main.c, and io.h

� if any of those files is updated, we must rebuild main.o

� if main.o is updated, we must update project1

10

make Exercise

• figlet : program for displaying large ASCII text (like banner).

� http://freecode.com/projects/figlet

• Download a piece of software and compile it with make:

� download .tar.gz file

� un-tar it

� (optional) look at README file to see how to compile it

� (sometimes) run ./configure

• for cross-platform programs; sets up make for our operating system

� run make to compile the program

� execute the program

11

Makefile rule syntax
target : source1 source2 ... sourceN

command

command

...

� source1 through sourceN are the dependencies for building
target

� Make will execute the commands in order

Example:

myprogram : file1.c file2.c file3.c

gcc -o myprogram file1.c file2.c file3.c

this is a tab THIS IS NOT spaces!!

� The command line must be indented by a single tab

• not by spaces; NOT BY SPACES! SPACES WILL NOT WORK!
12

Running make
$ make target

� uses the file named Makefile in current directory

� Finds a rule in Makefile for building target and follows it

• if the target file does not exist, or if it is older than any of its sources,

its commands will be executed

• variations:

$ make

� builds the first target in the Makefile

$ make -f makefilename

$ make -f makefilename target

� uses a makefile other than Makefile

2/21/2012

3

13

Making a Makefile
• Exercise: Create a basic Makefile to build {hello.c, file2.c, file3.c}

� Basic works, but is wasteful. What happens if we change file2.c?

• everything is recompiled. On a large project, this could be a huge waste

14

Making a Makefile

courtesy XKCD

15

Making a Makefile
• Exercise: Create a basic Makefile to build {hello.c, file2.c, file3.c}

� Basic works, but is wasteful. What happens if we change file2.c?

• everything is recompiled. On a large project, this could be a huge waste

� Augment the makefile to make use of precompiled object files and

dependencies

• by adding additional targets, we can avoid unnecessary re-compilation

16

Rules with no dependencies
myprog: file1.o file2.o file3.o

gcc -o myprog file1.o file2.o file3.o

clean:

rm file1.o file2.o file3.o myprog

• make assumes that a rule's command will build/create its target

� but if your rule does not actually create its target, the target will still

not exist the next time, so the rule will always execute its commands

(e.g. clean above)

� make clean is a convention for removing all compiled files

17

Rules with no commands
all: myprog myprog2

myprog: file1.o file2.o file3.o

gcc -o myprog file1.o file2.o file3.o

myprog2: file4.c

gcc -o myprog2 file4.c

...

• all rule has no commands, but depends on myprog and myprog2

� typing make all will ensure that myprog, myprog2 are up to date

� all rule often put first, so that typing make will build everything

• Exercise: add “clean” and “all” rules to our hello Makefile

18

Variables
NAME = value (declare)

$(NAME) (use)

Example Makefile:

OBJFILES = file1.o file2.o file3.o

PROGRAM = myprog

$(PROGRAM): $(OBJFILES)

gcc -o $(PROGRAM) $(OBJFILES)

clean:

rm $(OBJFILES) $(PROGRAM)

• variables make it easier to change one option throughout the file

� also makes the makefile more reusable for another project

2/21/2012

4

19

More variables
Example Makefile:

OBJFILES = file1.o file2.o file3.o

PROGRAM = myprog

CC = gcc

CCFLAGS = -g -Wall

$(PROGRAM): $(OBJFILES)

$(CC) $(CCFLAGS) -o $(PROGRAM) $(OBJFILES)

• many makefiles create variables for the compiler, flags, etc.

� this can be overkill, but you will see it "out there"

20

Special variables
$@ the current target file

$^ all sources listed for the current target

$< the first (left-most) source for the current target

(there are other special variables*)

Example Makefile:

myprog: file1.o file2.o file3.o

gcc $(CCFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h

gcc $(CCFLAGS) -c $<

• Exercise: change our hello Makefile to use variables for the object
files and the name of the program

*http://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

21

Auto-conversions
• Rather than specifying individually how to convert every .c file into

its corresponding .o file, you can set up an implicit target:

conversion from .c to .o Makefile comments!

.c.o:

gcc $(CCFLAGS) -c $<

� "To create filename.o from filename.c, run gcc -g -Wall -c filename.c"

• For making an executable (no extension), simply write .c :

.c:

gcc $(CCFLAGS) -o $@ $<

• Exercise: simplify our hello Makefile with a single .c.o conversion
22

What about Java?
• Create Example.java that uses a class MyValue in MyValue.java

� Compile Example.java and run it

• javac automatically found and compiled MyValue.java

� Now, alter MyValue.java

• Re-compile Example.java… does the change we made to MyValue

propagate?

• Yep! javac follows similar timestamping rules as the makefile

dependencies. If it can find both a .java and a .class file, and the .java is

newer than the .class, it will automatically recompile

• But be careful about the depth of the search...

• But, this is still a simplistic feature. Ant is a commonly used build

tool for Java programs giving many more build options.

23

Ant
• Similar idea to Make, though Ant uses build.xml instead of Makefile:

<project>

<target name=“name”>

tasks

</target>

<target name=“name”>

tasks

</target>

</project>

• Tasks can be things like:

� <javac … />

� <mkdir … />

� <delete … />

� A whole lot more…http://ant.apache.org/manual/tasksoverview.html
24

Ant Example
• Create an Ant file to compile our Example.java program

• Running ant (assuming build.xml in current directory):

$ ant targetname

2/21/2012

5

25

Ant Example
• Create an Ant file to compile our Example.java program

<project>

<target name="clean">

<delete dir="build"/>

</target>

<target name="compile">

<mkdir dir="build/classes"/>

<javac srcdir="src" destdir="build/classes"/>

</target>

</project>

26

Automated Build Systems
• Fairly essential for any large programming project

� Why? Shell scripts instead? What are these tools aiming to do?

� Is timestamping the right approach for determining “recompile”?

� What about dependency determination?

� What features would you want from an automated build tool?

� Should “building” your program also involve non-syntactic checking?

• Ant can run JUnit tests…

