
2/14/2012

1

1

CSE 390a
Lecture 7

Regular expressions,

egrep, and sed

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/390a/

2

Lecture summary
• regular expression syntax

• commands that use regular expressions
� egrep (extended grep) - search

� sed (stream editor) - replace

• links
� http://analyser.oli.tudelft.nl/regex/

� http://www.panix.com/~elflord/unix/grep.html

� http://www.robelle.com/smugbook/regexpr.html

3

What is a regular expression?

"[a-zA-Z_\-]+@(([a-zA-Z_\-])+\.)+[a-zA-Z]{2,4}"

• regular expression ("regex"): a description of a pattern of text

� can test whether a string matches the expression's pattern

� can use a regex to search/replace characters in a string

� regular expressions are extremely powerful but tough to read

• (the above regular expression matches basic email addresses)

• regular expressions occur in many places:

� shell commands (grep)

� many text editors (TextPad) allow regexes in search/replace

� Java Scanner, String split (CSE 143 grammar solver)

4

egrep and regexes

egrep "[0-9]{3}-[0-9]{3}-[0-9]{4}" faculty.html

• grep uses “basic” regular expressions instead of “extended”

� extended has some minor differences and additional metacharacters

� we’ll just use extended syntax. See online if you’re interested in the

details.

• -i option before regex signifies a case-insensitive match

� egrep -i "mart" matches "Marty S", "smartie", "WALMART", ...

command description

egrep extended grep; uses regexes in its search

patterns; equivalent to grep -E

5

Basic regexes
"abc"

• the simplest regexes simply match a particular substring

• this is really a pattern, not a string!

• the above regular expression matches any line containing "abc"

� YES : "abc", "abcdef", "defabc", ".=.abc.=.", ...

� NO : "fedcba", "ab c", "AbC", "Bash", ...

6

Wildcards and anchors
. (a dot) matches any character except \n

� ".oo.y" matches "Doocy", "goofy", "LooPy", ...

� use \. to literally match a dot . character

^ matches the beginning of a line; $ the end

� "^fi$" matches lines that consist entirely of fi

\< demands that pattern is the beginning of a word;

\> demands that pattern is the end of a word

� "\<for\>" matches lines that contain the word "for"

• Exercise : Find lines in ideas.txt that refer to the C language.

• Exercise : Find act/scene numbers in hamlet.txt .

2/14/2012

2

7

Special characters
| means OR

� "abc|def|g" matches lines with "abc", "def", or "g"

� precedence of ^(Subject|Date) vs. ^Subject|Date:

� There's no AND symbol. Why not?

() are for grouping

� "(Homer|Marge) Simpson" matches lines containing

"Homer Simpson" or "Marge Simpson"

\ starts an escape sequence

� many characters must be escaped to match them: / \ $. [] () ^ * + ?

� "\.\\n" matches lines containing ".\n"

8

Quantifiers: * + ?
* means 0 or more occurrences
� "abc*" matches "ab", "abc", "abcc", "abccc", ...

� "a(bc)*" matches "a", "abc", "abcbc", "abcbcbc", ...

� "a.*a" matches "aa", "aba", "a8qa", "a!?_a", ...

+ means 1 or more occurrences
� "a(bc)+" matches "abc", "abcbc", "abcbcbc", ...

� "Goo+gle" matches "Google", "Gooogle", "Goooogle", ...

? means 0 or 1 occurrences

� "Martina?" matches lines with "Martin" or "Martina"

� "Dan(iel)?" matches lines with "Dan" or "Daniel"

• Exercise : Find all ^^ or ^_^ type smileys in chat.txt .

9

More quantifiers
{min,max} means between min and max occurrences

� "a(bc){2,4}" matches "abcbc", "abcbcbc", or "abcbcbcbc"

• min or max may be omitted to specify any number

� "{2,}" means 2 or more

� "{,6}" means up to 6

� "{3}" means exactly 3

10

Character sets
[] group characters into a character set;

will match any single character from the set

� "[bcd]art" matches strings containing "bart", "cart", and "dart"

� equivalent to "(b|c|d)art" but shorter

• inside [], most modifier keys act as normal characters

� "what[.!*?]*" matches "what", "what.", "what!", "what?**!", ...

• Exercise : Match letter grades in 143.txt such as A, B+, or D- .

11

Character ranges
• inside a character set, specify a range of characters with -

� "[a-z]" matches any lowercase letter

� "[a-zA-Z0-9]" matches any lower- or uppercase letter or digit

• an initial ̂ inside a character set negates it

� "[^abcd]" matches any character other than a, b, c, or d

• inside a character set, - must be escaped to be matched

� "[+\-]?[0-9]+" matches optional + or -, followed by ≥ one digit

• Exercise : Match phone #s in faculty.html, e.g. (206) 685-2181 .

12

sed

• Usage:

� sed -r "s/REGEX/TEXT/g" filename

• substitutes (replaces) occurrence(s) of regex with the given text

• if filename is omitted, reads from standard input (console)

• sed has other uses, but most can be emulated with substitutions

• Example (replaces all occurrences of 143 with 390):

� sed -r "s/143/390/g" lecturenotes.txt

command description

sed stream editor; performs regex-based

replacements and alterations on input

2/14/2012

3

13

more about sed

• sed is line-oriented; processes input a line at a time

• -r option makes regexes work better

� recognizes () , [] , * , + the right way, etc.

• g flag after last / asks for a global match (replace all)

• special characters must be escaped to match them literally

� sed -r "s/http:\/\//https:\/\//g" urls.txt

• sed can use other delimiters besides / ... whatever follows s

� find /usr | sed -r "s#/usr/bin#/home/billy#g"

14

Back-references
• every span of text captured by () is given an internal number

� you can use \number to use the captured text in the replacement

� \0 is the overall pattern

� \1 is the first parenthetical capture

� ...

• Back-references can also be used in egrep pattern matching

� Match “A” surrounded by the same character: “(.)A\1”

• Example: swap last names with first names

� sed -r "s/([^]+), ([^]+)/\2 \1/g" names.txt

• Exercise : Reformat phone numbers with 685-2181 format to (206)

685.2181 format.

15

Other tools
• find supports regexes through its -regex argument

find . -regex ".*CSE 14[23].*"

• Many editors understand regexes in their Find/Replace feature

16

Exercise
• Write a shell script that reads a list of file names from files.txt

and finds any occurrences of MM/DD dates and converts them into

MM/DD/YYYY dates.

� Example:

04/17

� would be changed to:

04/17/2011

17

Yay Regular Expressions!

Courtesy
XKCD

