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CSE 390a

Lecture 2

Exploring Shell Commands, Streams, and Redirection

slides created by Marty Stepp, modified by Josh Goodwin
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Lecture summary

• Unix file system structure

• Commands for file manipulation, examination, searching

• Java compilation: using parameters, input, and streams

• Redirection and Pipes
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Unix file system
directory description

/ root directory that contains all others
(drives do not have letters in Unix)

/bin programs

/dev hardware devices

/etc system configuration files

 /etc/passwd stores user info

 /etc/shadow stores passwords

/home users' home directories

/media,

/mnt,  ...

drives and removable disks that have been 
"mounted" for use on this computer

/proc currently running processes (programs)

/tmp, /var temporary files

/usr user-installed programs
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Links

• hard link: Two names for the same file.

$ ln foo bar

 the above command links bar as a duplicate name for foo
• if one is modified, the other is too;  follows file moves

• soft (symbolic) link: A reference to another existing file.

$ ln -s foo bar

 the above command creates a reference bar to the file foo
•bar can be used as though it were foo

• but if bar is deleted, foo will be unaffected

command description

ln create a link to a file

unlink remove a link to a file
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File examination

• Let’s explore what we can do here…

command description

cat output a file's contents on the console

more or less output a file's contents, one page at a time

head,   tail output the first or last few lines of a file

wc count words, characters, and lines in a file

du report disk space used by a file(s)

diff compare two files and report differences
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Searching and sorting

• grep is actually a very powerful search tool;  more later...

• Exercise : Given a text file students.txt, display the students 
arranged by the reverse alphabetical order of their last names.

command description

grep search a file for a given string

sort convert an input into a sorted output by lines

uniq strip duplicate lines

find search for files within a given directory

locate search for files on the entire system

which shows the complete path of a command
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Keyboard shortcuts
^KEY means hold Ctrl and press KEY

key description

Up arrow repeat previous commands

Home/End or ^A/^E move to start/end of current line

" quotes surround multi-word arguments and 
arguments containing special characters

* "wildcard" , matches any files;
can be used as a prefix, suffix, or partial name

Tab auto-completes a partially typed file/command name

^C or ^\ terminates the currently running process

^D end of input; used when a program is reading input 
from your keyboard and you are finished typing

^Z suspends (pauses) the currently running process

^S don't use this; hides all output until ^Q is pressed



8

Programming

• Exercise : Write/compile/run a program that prints "Hello, world!"

$ javac Hello.java
$ java Hello
Hello, world!
$

command description

javac ClassName.java compile a Java program

java ClassName run a Java program

python, perl, ruby,
gcc, sml, ...

compile or run programs in various 
other languages
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Programming

• Creating parameter input to programs
 String[] args holds any provided parameters
 Exercise: modify hello world to use parameters

• Parameters not the same as the input stream!
 Exercise: modify hello world to also use a Scanner to grab input

Let’s revisit the standard streams…
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Streams in the Shell

• Stdin, stdout, stderr

 These default to the console

 Some commands that expect an input stream will thus read from the 
console if you don’t tell it otherwise.

• Example: grep hi

 What happens?  Why?

We can change the default streams to something other than the 
console via redirection.
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Output redirection

command > filename

 run command and write its output to filename instead of to console;

• think of it like an arrow going from the command to the file...

• if the file already exists, it will be overwritten  (be careful)

• >> appends rather than overwriting, if the file already exists

•command > /dev/null suppresses the output of the command

 Example: ls -l > myfiles.txt

 Example: java Foo >> Foo_output.txt

 Example: cat > somefile.txt
(writes console input to the file until you press ^D)
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Input redirection

command < filename

 run command and read its input from filename instead of console

• whenever the program prompts the user to enter input (such as reading 
from a Scanner in Java), it will instead read the input from a file

• some commands don't use this;  they accept a file name as an argument

 Example: java Guess < input.txt
 Exercise:  run hello world with the input stream as a file instead of the 

console
 Exercise:  Also change the output stream to write the results to file

 again note that this affects user input, not parameters

 useful with commands that can process standard input or files:

• e.g.  grep, more, head, tail, wc, sort, uniq, write
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Combining commands

command1 | command2

 run command1 and send its console output as input to command2

 very similar to the following sequence:
command1 > filename
command2 < filename
rm filename

 Examples: diff students.txt names.txt | less
grep Josh names.txt | uniq

 Exercise :  names.txt contains CSE student names, one per line, in 
"LASTNAME, FIRSTNAME" format. We are interested in students 
whose first names begin with "J", such as “Goodwin, Josh".
• Find out of how many such students are in the file.
• Then figure out how many total letters (including comma and spaces) are in 

the full name of the last student in alphabetical order from this group. 
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Misusing pipes and cat

• Why doesn't this work to compile all Java programs?

ls *.java | javac

• Misuse of cat

 bad: cat filename | command

 good: command < filename

 bad: cat filename | more

 good: more filename

 bad: command | cat

 good: command
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Commands in sequence

command1 ; command2

 run command1 and then command2 afterward (they are not linked)

command1 && command2

 run command1, and if it succeeds, runs command2 afterward

 will not run command2 if any error occurs during the running of 1

 Example: Make directory songs and move my files into it.

mkdir songs && mv *.mp3 songs


