
1

CSE 390a

Lecture 2

Exploring Shell Commands, Streams, and Redirection

slides created by Marty Stepp, modified by Josh Goodwin

http://www.cs.washington.edu/390a/

http://www.cs.washington.edu/390a/


2

Lecture summary

• Unix file system structure

• Commands for file manipulation, examination, searching

• Java compilation: using parameters, input, and streams

• Redirection and Pipes



3

Unix file system
directory description

/ root directory that contains all others
(drives do not have letters in Unix)

/bin programs

/dev hardware devices

/etc system configuration files

 /etc/passwd stores user info

 /etc/shadow stores passwords

/home users' home directories

/media,

/mnt,  ...

drives and removable disks that have been 
"mounted" for use on this computer

/proc currently running processes (programs)

/tmp, /var temporary files

/usr user-installed programs



4

Links

• hard link: Two names for the same file.

$ ln foo bar

 the above command links bar as a duplicate name for foo
• if one is modified, the other is too;  follows file moves

• soft (symbolic) link: A reference to another existing file.

$ ln -s foo bar

 the above command creates a reference bar to the file foo
•bar can be used as though it were foo

• but if bar is deleted, foo will be unaffected

command description

ln create a link to a file

unlink remove a link to a file



5

File examination

• Let’s explore what we can do here…

command description

cat output a file's contents on the console

more or less output a file's contents, one page at a time

head,   tail output the first or last few lines of a file

wc count words, characters, and lines in a file

du report disk space used by a file(s)

diff compare two files and report differences



6

Searching and sorting

• grep is actually a very powerful search tool;  more later...

• Exercise : Given a text file students.txt, display the students 
arranged by the reverse alphabetical order of their last names.

command description

grep search a file for a given string

sort convert an input into a sorted output by lines

uniq strip duplicate lines

find search for files within a given directory

locate search for files on the entire system

which shows the complete path of a command



7

Keyboard shortcuts
^KEY means hold Ctrl and press KEY

key description

Up arrow repeat previous commands

Home/End or ^A/^E move to start/end of current line

" quotes surround multi-word arguments and 
arguments containing special characters

* "wildcard" , matches any files;
can be used as a prefix, suffix, or partial name

Tab auto-completes a partially typed file/command name

^C or ^\ terminates the currently running process

^D end of input; used when a program is reading input 
from your keyboard and you are finished typing

^Z suspends (pauses) the currently running process

^S don't use this; hides all output until ^Q is pressed



8

Programming

• Exercise : Write/compile/run a program that prints "Hello, world!"

$ javac Hello.java
$ java Hello
Hello, world!
$

command description

javac ClassName.java compile a Java program

java ClassName run a Java program

python, perl, ruby,
gcc, sml, ...

compile or run programs in various 
other languages



9

Programming

• Creating parameter input to programs
 String[] args holds any provided parameters
 Exercise: modify hello world to use parameters

• Parameters not the same as the input stream!
 Exercise: modify hello world to also use a Scanner to grab input

Let’s revisit the standard streams…



10

Streams in the Shell

• Stdin, stdout, stderr

 These default to the console

 Some commands that expect an input stream will thus read from the 
console if you don’t tell it otherwise.

• Example: grep hi

 What happens?  Why?

We can change the default streams to something other than the 
console via redirection.



11

Output redirection

command > filename

 run command and write its output to filename instead of to console;

• think of it like an arrow going from the command to the file...

• if the file already exists, it will be overwritten  (be careful)

• >> appends rather than overwriting, if the file already exists

•command > /dev/null suppresses the output of the command

 Example: ls -l > myfiles.txt

 Example: java Foo >> Foo_output.txt

 Example: cat > somefile.txt
(writes console input to the file until you press ^D)



12

Input redirection

command < filename

 run command and read its input from filename instead of console

• whenever the program prompts the user to enter input (such as reading 
from a Scanner in Java), it will instead read the input from a file

• some commands don't use this;  they accept a file name as an argument

 Example: java Guess < input.txt
 Exercise:  run hello world with the input stream as a file instead of the 

console
 Exercise:  Also change the output stream to write the results to file

 again note that this affects user input, not parameters

 useful with commands that can process standard input or files:

• e.g.  grep, more, head, tail, wc, sort, uniq, write



13

Combining commands

command1 | command2

 run command1 and send its console output as input to command2

 very similar to the following sequence:
command1 > filename
command2 < filename
rm filename

 Examples: diff students.txt names.txt | less
grep Josh names.txt | uniq

 Exercise :  names.txt contains CSE student names, one per line, in 
"LASTNAME, FIRSTNAME" format. We are interested in students 
whose first names begin with "J", such as “Goodwin, Josh".
• Find out of how many such students are in the file.
• Then figure out how many total letters (including comma and spaces) are in 

the full name of the last student in alphabetical order from this group. 



14

Misusing pipes and cat

• Why doesn't this work to compile all Java programs?

ls *.java | javac

• Misuse of cat

 bad: cat filename | command

 good: command < filename

 bad: cat filename | more

 good: more filename

 bad: command | cat

 good: command



15

Commands in sequence

command1 ; command2

 run command1 and then command2 afterward (they are not linked)

command1 && command2

 run command1, and if it succeeds, runs command2 afterward

 will not run command2 if any error occurs during the running of 1

 Example: Make directory songs and move my files into it.

mkdir songs && mv *.mp3 songs


