
1

CSE 390a

Lecture 1

introduction to Linux/Unix environment

slides created by Marty Stepp, modified by Josh Goodwin

http://www.cs.washington.edu/390a/

http://www.cs.washington.edu/303/

2

Lecture summary

• Course introduction and syllabus

• Unix and Linux operating system

• introduction to Bash shell

3

Course Introduction

• Me:

 Josh Goodwin, dravir@cs

 Office hours: Thursdays 1:30-2:30 CSE216

• CSE390a

 Replaces what used to be CSE303

 Collection of tools and topics not specifically addressed in other
courses that CSE majors should know

• *nix CLI, Shell scripting, compilation tools (makefiles), version control…

 Credit / No Credit course, determined by short weekly assignments
and a final exam

4

Operating systems

• What is an OS? Why have one?

• What is a Kernel?

5

Operating systems

• operating system: Manages activities and resources of a computer.

 software that acts as an interface between hardware and user

 provides a layer of abstraction for application developers

• features provided by an operating system:

 ability to execute programs (and multi-tasking)

 memory management (and virtual memory)

 file systems, disk and network access

 an interface to communicate with hardware

 a user interface (often graphical)

• kernel: The lowest-level core of an operating system.

6

Unix

• brief history:

 Multics (1964) for mainframes

 Unix (1969)

 K&R

 Linus Torvalds and Linux (1992)

• key Unix ideas:

 written in a high-level language (C)

 virtual memory

 hierarchical file system; "everything" is a file

 lots of small programs that work together to solve larger problems

 security, users, access, and groups

 human-readable documentation included

7

On to Linux

Courtesy XKCD.com

8

Linux

• Linux: A kernel for a Unix-like operating system.

 commonly seen/used today in servers, mobile/embedded devices, ...

• GNU: A "free software" implement of many useful Unix-like tools.

 many GNU tools are distributed with the Linux kernel

• distribution: A pre-packaged set of Linux software.

 examples: Ubuntu, Fedora

• key features of Linux:

 open source software: source can be downloaded

 free to use

 constantly being improved/updated by the community

9

Features of Linux

• X-windows

• window managers

• desktop environments

 Gnome

 KDE

• How can I try out Linux?

 CSE basement labs

 attu shared server

 at home (Live CD, VirtualBox, etc.)

• The Linux help philosophy: "RTFM" (Read the F***ing Manual)

10

Exercises

• Install Linux and boot it up successfully.

• Load the course web site in Linux.

• Install a new game on Linux and play it.

• Get Linux to play an MP3.

11

Shell

• shell: An interactive program that uses user input to manage the
execution of other programs.

 bash : the default shell program on most Linux/Unix systems

• Why should I learn to use a shell when GUIs exist?

12

Shell

• shell: An interactive program that uses user input to manage the
execution of other programs.

 bash : the default shell program on most Linux/Unix systems

• Why should I learn to use a shell when GUIs exist?

 faster

 work remotely

 programmable

 customizable

 repeatable

• input, output, and errors

• directories: working/current directory, home directory

13

Shell commands

$ pwd
/homes/iws/dravir
$ cd CSE390
$ ls
file1.txt file2.txt
$ ls –l
-rw-r--r-- 1 dravir vgrad_cs 0 2010-03-29 17:45 file1.txt
-rw-r--r-- 1 dravir vgrad_cs 0 2010-03-29 17:45 file2.txt
$ cd ..
$ man ls
$ exit

command description

exit logs out of the shell

ls lists files in a directory

pwd outputs the current working directory

cd changes the working directory

man brings up the manual for a command

14

Relative directories
directory description

. the directory you are in ("working directory")

.. the parent of the working directory
(../.. is grandparent, etc.)

~ your home directory
(on many systems, this is /home/username)

~username username's home directory

~/Desktop your desktop

15

Shell commands

• many accept arguments or parameters

 example: cp (copy) accepts a source and destination file path

• a program uses 3 streams of information:

 stdin, stdout, stderr (standard in, out, error)

• input: comes from user's keyboard

• output: goes to console

• errors can also be printed (by default, sent to console like output)

• parameters vs. input
 parameters: before Enter is pressed; sent in by shell

 input: after Enter is pressed; sent in by user

16

Directory commands

• some commands (cd, exit) are part of the shell ("builtins")

• others (ls, mkdir) are separate programs the shell runs

command description

ls list files in a directory

pwd output the current working directory

cd change the working directory

mkdir create a new directory

rmdir delete a directory (must be empty)

17

Command-line arguments

• most options are a - followed by a letter such as -c

 some are longer words preceded by two - signs, such as --count

• parameters can be combined: ls -l -a -r can be ls -lar

• many programs accept a --help or -help parameter to give more
information about that command (in addition to man pages)

 or if you run the program with no arguments, it may print help info

• for many commands that accept a file name parameter, if you omit
the parameter, it will read from standard input (your keyboard)

 note that this can conflict with the previous tip

18

Shell/system commands

• "man pages" are a very important way to learn new commands
man ls
man man

command description

man or info get help on a command

clear clears out the output from the console

exit exits and logs out of the shell

command description

date output the system date

cal output a text calendar

uname print information about the current system

19

File commands

• caution: the above commands do not prompt for confirmation
 easy to overwrite/delete a file; this setting can be overridden (how?)

• Exercise : Given several albums of .mp3 files all in one folder, move
them into separate folders by artist.

• Exercise : Modify a .java file to make it seem as though you
finished writing it on March 15 at 4:56am.

command description

cp copy a file

mv move or rename a file

rm delete a file

touch create a new empty file, or
update its last-modified time stamp

