
CSE 390, Spring 2010
Assignment 4: Users, Groups, Permissions

Due Tuesday, April 27, 2010, 12:30 PM

This assignment continues to practice using the bash shell and basics of combining commands using redirection and
pipes. Electronically turn in files homework4.txt, .plan, and .bash_profile as described in this document. To
receive credit, your .plan and .bash_profile should also be present in your home directory with proper permissions.

Task 1: .plan file
A file named .plan can be placed into your home directory to tell other users of the system about you. In this file you
can write any text you like, and the text will be displayed to other users when they use the finger command on you.
Set up a .plan file for yourself on attu that contains the following contents:

• At least one sentence about yourself (can be real or made up)
• A cow message as would be output from the ~stepp/cowsay or ~stepp/cowthink programs
• One other piece of ASCII art, or a short message in large text as would be output from ~stepp/banner

Test your .plan file by running finger on yourself. Turn in this file as part of your assignment submission, but part of
this task is also making sure that the file can be seen by other students successfully when they use the finger command.
The file must have read permissions for all users. Ask a classmate to try this command on you to see whether they see
your .plan. In grading we will check whether you have a .plan file by running finger on each student.

Task 2: Bash shell commands on attu
For each item below, determine a single bash shell statement that will perform the operation(s) requested. Each
solution must be a one-line shell statement, but you may use input/output redirection operators such as >, <, |, and &&.
Write these commands into your homework4.txt file, one per line. In your file, write the command that will perform
the task described for each numbered item; don't write the actual output that such a command would produce.

1. (Self-Discovery) The tar command compresses/decompresses files in the Unix TAR (“tape archive”) file format.
TAR merges many files into a single archive; however, unlike ZIP, TAR does not compress the contents.
Therefore most .tar files are then subsequently also compressed with a separate compression algorithm called
GNU ZIP (“gzip”), which yields a .tar.gz file. (This format was used over ZIP because of patent issues.)

For this exercise, show a single command that will decompress file hw4.tar.gz from the current folder in
“verbose” mode, so that it echoes each file that is coming out of the archive. (Hint: You don't need |, &&, ;, etc.)
You can download hw4.tar.gz on the course web site and use it for testing the other problems below.

2. Set the file example1.txt in the current directory so that its owner and its group can read the file.
(You don't need to change any other permissions that might currently be set on the file.)

3. (two parts) (a) Set all files with extensions .dat and .doc to be read/writable (but not executable) by their
owner, and to have no access from others. (Your command should grant these exact permissions and revoke any
others.) Do this using the standard letter code arguments for granting and removing permissions.

(b) Write this same command but using the octal number code arguments to grant/remove the permissions.

4. Set all files in the current directory and all its subdirectories recursively to have a group of ugrad_cs .
(You probably should not test this command from your home directory, because it might give all other CSE
undergrads access to your files. Test it from a subdirectory of your home directory instead.)

5. Give a command that would launch a text editor of your choice to edit the file /etc/hosts (a system
configuration file that contains a mapping from internet domain names to IP addresses) as the root super-user.
(You won't be able to test this on attu since you don't have root access; but you could test it on your own box.)

6. Set all .java files in the current directory and all its subdirectories (and sub-sub-directories, etc.) to have read
permission to all users. (You can't achieve this simply with a chmod command; you need to use other commands
taught recently for finding a particular group of files and processing each one as a command-line argument.)

7. Set all files of at least 1 kilobyte in size in the current directory and all subdirs to have a group of ugrad_cs .

1 of 2

Task 3: Login script, .bash_profile
As we have discussed in class, .bash_profile is a script that runs every time you log in to a Bash shell. For this part of this
assignment, you should create a .bash_profile file in your home directory that performs the following operations:

1. Create an alias so that when you type attu, you will connect to attu.cs.washington.edu with SSH. (This
alias isn't very useful if you're testing on attu itself, but set it up anyway.) Set up a similar alias so that when
you type dante, you will connect via SSH to dante.u.washington.edu.

2. Set it so that when you try to delete a file or overwrite a file during a move/copy operation, the user is prompted
for confirmation first. (Hint: Set each of the three operations described to run in its “interactive mode”.)

3. (Self-Discovery) The umask command specifies what permissions are given by default to newly created files.

Use umask to set it such that when you create files, they are given read/write permission to you (the owner), but
no permissions to anyone else. This will keep your future homework files from being seen by others.

4. Lists which of your friends are online and what they are doing. Before adding this command to your
.bash_profile, define a file named buddylist.txt in your home directory whose contents are the CSE user
names of two or more of your friends in the department, one per line. The file can have as many lines as you like
so long as it is at least two. If you don't know anybody in the department, you may use stepp, dravir, or
reges. Now add a command to your .bash_profile script to display which of them are logged in to the
system and what they're doing, sorted by user name. For example, if your buddylist.txt contains:

stepp
bensonl
ln

Then a possible output from this command of your .bash_profile might be:
ln pts/5 :pts/6:S.1 21:09 2:20m 0.34s 0.28s vim poisson.ml
ln pts/6 207.108.209.70 20:33 2:15m 0.06s 0.02s screen
ln pts/8 :pts/6:S.0 20:33 2:15m 11.23s 0.08s bash ./getml.sh
stepp pts/3 67.160.45.86 00:10 7:46 0.02s 0.04s banner ^_^
stepp pts/10 67.160.45.86 00:20 8:34 0.02s 0.00s cowsay

(Hint: You can get this to work using commands we've already seen, but you will need to read the man pages.)

Note that your command should work regardless of the number of user names in buddylist.txt. You should
not assume that buddylist.txt contains exactly 3 names as shown above, etc.

Recall that you can test the functionality of your .bash_profile by writing the following command in the shell:

source .bash_profile

2 of 2

