
1

1/20/99 CSE378 Procedures. 1

Program and memory layout

• By convention the layout is:

– Note that only half of the addressing
 space is taken by user
 Other half is O.S.

Stack

Reserved40000

Program text
1000 0000

7fff ffff

Static data
Dynamic data

1/20/99 CSE378 Procedures. 2

Procedures

• Procedures/functions are the major program structuring
mechanism

• Calling and returning form a procedure requires a protocol
between caller and callee

• Protocol is based on conventions

2

1/20/99 CSE378 Procedures. 3

Procedures/Functions -- Protocol

• Each machine (compiler?) has its own set of protocol(s)
• Protocol: combination of hardware/software

– e.g., “jal” is hardware; use of register $29 as $sp is software

• Protocol: sequence of steps to be followed at each call and
each return
– controlled by hardware and/or software

• In RISC machines
– hardware performs simple instructions
– software (compiler/assembler) controls sequence of instructions

1/20/99 CSE378 Procedures. 4

Program stack

• Each executing program (process) has a stack
• Stack = dynamic data structure accessed in a LIFO manner
• Program stack automatically allocated by O.S.
• At the start of the program, register $sp ($29 in Mips) is

automatically loaded to point to the first empty slot on top
of stack
– After that it will be your responsibility to manage $sp

• By convention, stack grows towards lower addresses
– to allocate new space (i.e., when you push), decrement $sp
– to free space on top of stack (pop), increment $sp

3

1/20/99 CSE378 Procedures. 5

Push operation

• push adds an item on top of stack
– one instruction to manipulate the data, e.g. “sw $6,0($sp)”
– one instruction to adjust the stack pointer e.g., “subu $sp,$sp,4”

before after

46

-72

???

46

-72

127

???

8($sp)

4($sp)

$sp

12($sp)

8($sp)

4($sp)

$sp

127 $6 127 $6

1/20/99 CSE378 Procedures. 6

Pop operation

• pop removes the item on top of stack and stores it in a
register
– one instruction to adjust the stack pointer e.g., “addu $sp,$sp,4”
– one instruction to manipulate the data, e.g. “lw $6,0($sp)”

after before

46

-72

127

46

-72

127

???

8($sp)

4($sp)

$sp

12($sp)

8($sp)

4($sp)

$sp

127 $6 453 $6

4

1/20/99 CSE378 Procedures. 7

Procedure call requirements (caller/callee)

• Caller must pass the return address to the callee
• Caller must pass the parameters to the callee
• Caller must save what is volatile (registers) and could be

used by the callee
• Callee must save the return address (in case it becomes a

caller)
• Callee must provide (stack) storage for its own use
• Caller/callee should support recursive calls

1/20/99 CSE378 Procedures. 8

Mechanism

• Registers are used for
– passing return address in $ra

• jal target

– passing a small number of
parameters (up to 4 in $a0 to
$a3)

– keeping track of the stack ($sp)
– returning function values (in

$v0 and $v1)

• Stack is used for
– saving registers to be used by

callee
– saving info about the caller

(return address)
– passing parameters if needed
– allocating local data for the

called procedure

5

1/20/99 CSE378 Procedures. 9

Procedure calls and register conventions

Register Name Function Comment

$0 Zero Always 0 No-op on write

$1 $at Reserved for assembler Don’t use it

$2-3 $v0-v1 Expr. Eval/funct. Return

$4-7 $a0-a3 Proc./func. Call parameters

$8-15 $t0-t7 Temporaries; volatile Not saved on proc. Calls

$16-23 $s0-s7 Temporaries Should be saved on calls

$24-25 $t8-t9 Temporaries; volatile Not saved on proc. Calls

$26-27 $k0-k1 Reserved for O.S. Don’t use them

$28 $gp Pointer to global static memory

$29 $sp Stack pointer

$30 $fp Frame pointer

$31 $ra Proc./funct return address

1/20/99 CSE378 Procedures. 10

Who does what on a call (one sample protocol)

• Caller
– Saves any volatile register

($t0-$t9) that has contents that
need to be kept

– Puts up to 4 arguments in $a0-
$a3

– If more than 4 arguments,
pushes the rest on the stack

– calls with jal instruction

• Callee
– saves $ra on stack
– saves any non-volatile register

($s0-s7) that it will use

6

1/20/99 CSE378 Procedures. 11

Who does what on return

• Callee
– restores any non-volatile

register ($s0-$s7) it has used
– restores $ra
– puts function results in $v0-

$v1
– adjusts $sp
– returns to caller with “jr $ra”

• Caller
– restores any volatile register it

had saved
– examines $v0-$v1 if needed

1/20/99 CSE378 Procedures. 12

Example of a call sequence

• Assume 2 arguments in $t0 and $t3 and we want to save
the contents of $t6 and $t7

move $a0,$t0 #1st argument in $a0
move $a1,$t3 #2nd argument in $a1
subu $sp,$sp,8 #room for 2 temps on stack
sw $t6,8($sp) #save $t6 on stack

 sw $t7,4($sp) #save $t7 on stack
 jal target

• Assume the callee does not need to save registers
target: sw $ra,0($sp) #save return address
 subu $sp,$sp,4 # on stack

7

1/20/99 CSE378 Procedures. 13

Return from the previous sequence

• The callee will have put the function results in $v0-$v1
addu $sp,$Sp,4 #pop
lw $ra,0($sp) #return address in $ra
jr $ra #to caller

• The caller will restore $t6 and $t7 and adjust stack
lw $t6,8($sp)
lw $t7,4($sp)
addu $sp,$Sp,8

