
1

1/8/99 CSE378 Number rep. 1

Decimal and binary representation systems

• They both are positional representation systems
• In decimal numbers are represented by the coefficients of

the powers of 10
– Example: 321 = 3 . 102 + 2 . 101 + 1. 100

• Decomposing 321 in powers of 2 yields 321= 256 + 64 + 1
– or 1. 28 + 0. 27 + 1. 26 + 0. 25 + 0. 24 + 0. 23 + 0. 22 + 0. 21 + 1. 20

– or 1010000012

1/8/99 CSE378 Number rep. 2

Positional number systems

• More generally, a positive integer is represented in
– decimal by where the
 are between 0 and 9

– binary by where the
 are 0 or 1

inn

i ia -

=
×∑ 10

0 ia

imm

i ib −
= ×∑ 2

0 ib

2

1/8/99 CSE378 Number rep. 3

Binary and Hexadecimal representation systems

• Writing binary numbers quickly becomes error-prone and
unwieldy

• Instead use hexadecimal system, positional representation
system in base 16
– Example: 321 = 1 .162 + 4 .161 + 1 .160 = 14116

• Since the coefficients are between 0 and 15, we need new
symbols to represent 10 through 15. They will be A
through F
– A (hex) = 10 (decimal) = 1010 (binary)
– B (hex) = 11 (decimal) = 1011 (binary) ...
– F (hex) = 15 (decimal) = 1111 (binary)

1/8/99 CSE378 Number rep. 4

Conversion between binary and hexadecimal

• Group bits (abbreviation for binary digits) by groups of
four, starting from the right (least significant bit or lsb)
– Example: 101000001 = 1 0100 0001 (binary) = 141 (hex)
– 111001011 = 1 1100 1011 (binary) = 1CB (hex)
– Note that the greatest magnitude bit , the leftmost one, is called

(most significant bit or msb)

• Why hexadecimal?
– Very convenient to represent strings of 4, 8, … ,16,… 32, … 64 bits

by 1,2,..,4,… 8… .16 hex digits

3

1/8/99 CSE378 Number rep. 5

Some useful powers of two

• We’ll often round-off and talk about, say, 16 KB or 64 MB

G

M

K

1102

1102

11010242

930

620

3
10

10

=≈
=≈

=≈=

1/8/99 CSE378 Number rep. 6

Representing positive and negative integers

• In an n-bit register, you can represent 2n patterns
– Example: in a 32-bit register, we can represent unsigned integers

in the range [0:232-1]

• How to represent positive and negative integers with the
following properties:
– Equal number of positive and negative numbers
– Unique (and easily testable) representation of zero
– Easy sign test
– Easy rules for addition and subtraction

4

1/8/99 CSE378 Number rep. 7

Three representation systems

• Historically, 3 different numbering systems have been used
– Two’s complement now used in all machines for integer

representation
– sign and magnitude used (partially) for floating-point

representation
– One’s complement (very similar to 2’s complement but with a few

more drawbacks)

1/8/99 CSE378 Number rep. 8

Two’s complement representation

• Positive numbers as unsigned binary with msb always 0
• Zero is represented as a string of 0’s
• To represent a negative number:

– Consider the representation of its absolute value
– Flip all 1’s to 0’s and 0’s to 1’s (this is 1’s complement)
– Add 1 to lsb using binary arithmetic rules

5

1/8/99 CSE378 Number rep. 9

2’s complement

• Example assuming a 4-bit register
– What is the representation of (decimal) 6?
– What is the representation of (decimal) -6?
– What is the representation of 0?
– What is the range of representation of positive numbers?
– What is the range of representation of negative numbers?
– How do I recognize whether a number is positive or negative or

zero?

1/8/99 CSE378 Number rep. 10

Addition in 2’s complement

• Addition
– Perform an ordinary binary addition and discard the carry-out
– If you add 2 numbers of opposite sign, everything will always be

all right
– If you add two positive numbers and the result appears to be

negative (i.e., msb = 1) then you have an overflow. This will
generate an exception in your program.

– If you add two negative numbers and the result appears to be
positive (i.e., msb = 0) then you have an underflow.

• Subtraction
– Take the 2’s complement of the subtrahend and add it to the other

operand

