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Input-output

• I/O is very much architecture dependent
• I/O requires cooperation between

– processor that issues I/O command (read, write etc.)
– buses that provide the interconnection between processor, memory

and I/O devices
– I/O controllers that handle the specifics of control of each device

and interfacing
– devices that store data or signal events
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Basic (simplified) I/O architecture
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Types of I/O devices

• Input devices
– keyboard, mouse

• Output devices
– screen, line printer

• Devices for both input and output
– disks, connection to networks
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An important I/O device: the disk
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Secondary memory (disks)

• Physical characteristics
– Platters (1 to 20) with diameters from 1.3 to 8 inches (recording on

both sides)
– Tracks  (500 to 2,500)
– Cylinders (all the tracks in the same position in the platters)
– Sectors (e.g., 128 sectors/track with gaps and info related to sectors

between them; typical sector 512 bytes)
– Current trend: constant bit density, i.e., more info on outer tracks
– Example: Capacity = # platters * # tracks * # sectors * cap. sector
       20 * 2,000 * 128 * 512  = approx. 2.5 GB
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Disk access time

• Arm(s) with a reading/writing head
• Four components in an access:

– Seek time (to move the arm on the right cylinder) From 0 (if arm
already positioned) to a maximum of 15-20 ms. Not a linear
function. Smaller disks have smaller seek times

– Rotation time (on the average 1/2 rotation). At 3600 RPM, 8.3 ms.
Current disks are 3600 or 5400  or even 7200 RPM

– Transfer time depends on rotation time, amount to transfer
(minimal size a sector), recording density, disk/memory
connection. Today, transfer time occurs at 2 to 8 MB/second

– Disk controller time. Overhead to perform an access (of the order
of 1 ms)
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Improvements in disks

• Capacity (via density). Same growth rate as DRAMs
• Price decrease has followed  (today $100/GB, maybe less)
• Access times have not changed much

– Higher density -> smaller drives -> smaller seek time
– RPM has increased slightly 3600 to 5400 and even 7200
– Transfer time about the same

• CPU speed  - DRAM access is one “memory wall”
• DRAM access time - Disk access time is a “memory gap”

– Technologies to fill the gap have not succeeded (currently the most
promising is more DRAM backed up by batteries)
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Connecting CPU, Memory and I/O
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Buses

• Simplest interconnect
– Low cost: set of shared wires
– Easy to add devices (although variety of devices might make the

design more complex or less efficient -- longer bus and more load;
hence the distinction between I/O buses and CPU/memory buses)

– But single shared resource so can get saturated (both physically
because of electrical load, and performance-wise because of
contention to access it )

• Key parameters:
– Width (number of lines:data, addresses, control)
– Speed (limited by length and load)
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Memory and I/O buses

• CPU/memory bus: tailored to the particular CPU
– Fast (separate address and data lines)
– Often short and hence synchronous (governed by a clock)
– Wide (64-128 and even 256 bits) )
– Expensive

• I/O bus: follows some standard so many types of devices
can be hooked on to it
– Asynchronous (hand-shaking protocol)
– Narrower
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Bus transactions

• Consists of arbitration and commands
– Arbitration: who is getting control of the bus
– Commands: type of transaction (read, write, ack, etc… )

• Read, Write, Atomic Read-Modify-Write (atomic swap) 
– Read: send address and data is returned
– Write: send address and data
– Read-Modify-write : keep bus  during the whole transaction .Used

for synchronization between processes
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Bus arbitration

• Arbitration: who gets the bus if several requests at the
same time
– Only one master: centralized arbitration
– Multiple masters (most common case): centralized arbitration

(FIFO, daisy-chain, round-robin, combination of those) vs.
decentralized arbitration (each device knows its own priority)

• Communication protocol between master and slave
– Synchronous (for short buses - no clock skew - i.e. CPU/memory)
– Asynchronous (hand-shaking finite-state machine; easier to

accommodate many devices)
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Hand-shaking protocol

• Example : Master (CPU) requests data from Slave (Mem)
1. Master transmits a read request (control lines) and address

(address/data lines)
2. Slave recognizes the request. Grabs the address and raises the Ack

control line.
3. Master sees the Ack line high. Releases the request and data lines
4. Slave sees the Read request low. Releases the Ack line
5. Slave is ready to transmit data. Places data on data lines and raises

Data ready (control line)
6. Master sees Data ready high. Grabs data and raises Ack
7. Slave sees Ack high. Releases data line and Data Ready
8. Master sees Data Ready low. Releases Ack. Transaction is finished
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Split-transaction buses

• Split a read transaction into
– Send address (CPU is master)
– Send data (Memory is master)
– In between these two transactions (memory access time) the bus is

freed
– Requires “tagging” the transaction

• Can even have more concurrency by having different
transactions using the data and address lines concurrently

• Useful for multiprocessor systems and for I/O
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I/O Hardware-software interface

• I/O is best left to the O.S. (for protection and scheduling in
particular)

• O.S. provides routines that handles devices (or controllers)
• But since O.S. is a program, there must be instructions to

generate I/O commands
• CPU must be able to:

– tell a device what it wants done (e.g., read, write, etc.)
– start the operation (or tell the device controller to start it)
– find out when the operation is completed (with or without error)

• No unique way to do all this. Depends on ISA and I/O
architecture
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I/O operations

• Specific I/O instructions
– I/O instruction specifies both the device number and a command

(or an address where the I/O device can find a series of commands)
– Example: Intel x86 (IN and OUT between EAX register and an I/O

port whose address is either an immediate or in the DX register)

• Memory-mapped I/O
– Portions of address space devoted to I/O devices (read/write to

these addresses transfer dataor are used to control I/O devices)
– Memory ignores these addresses

• In both cases, only the O.S. can execute I/O operations or
read/write data to memory-mapped  locations
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I/O termination

• Two techniques to know when an I/O operation terminates
– Polling
– Interrupts

• Polling
– CPU repeatedly checks whether a device has completed
– Used for “slow” devices such as the mouse (30 times a second)

• Interrupts
– When the I/O completes it generates an (I/O) interrupt
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I/O interrupts

• An interrupt is like an exception
– Exception created by the program (page fault, divide by zero etc.)
– Interrupts occur as a consequence of external stimuli (I/O, power

failure etc.)

• Presence of an interrupt checked on every cycle
• Upon an interrupt, O.S. takes over (context-switch)
• Two basic schemes to handle the interrupt

– Vectored interrupts: the O.S. is told (by the hardware) where to
handle the interrupt

– Use of a cause register. The O.S. has to examine the contents of
that register to transfer to the appropriate handler
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Data transfer to/from I/O device

• Can be done either by
– Using the CPU to transfer data from (to) the device to (from

memory.
• Can be done either via polling (programmed I/O operation) or

interrupt
• Slow operation

– Using DMA (direct-memory address)
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DMA

• Having long blocks of I/O go through the processor via
load-store is totally inefficient

• DMA (direct memory address) controller:
– specialized processor for transfer of blocks between memory and

I/O devices w/o intervention from CPU (except at beg. and end)
– Has registers set up by CPU for beginning memory address and

count
– DMA device interrupts CPU at end of transfer
– DMA device is a master for the bus
– More complex DMA devices become I/O processors or channels

controllers (with their own stored programs)
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DMA and virtual memory

• What if the block to transfer is greater than 1 page
– Address translation registers within the DMA device

• What if the O.S. replaces a page where transfer is taking place
– Pages are “pinned” (locked) during transfer
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I/O and caches

• Recall previous discussion
– Write-back caches:

• on output, the O.S. flushes the cache before the page is written out
• on input, blocks in the cache are invalidated

– Write-through caches
• on output, no problem since cache and memory are consistent
• on input, as in write-back

• Another possibility
– Have the I/O go through the cache
– Problem with performance (unused blocks in cache, interference

with CPU)
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Disk arrays

• Reliability: is anything broken?
• Availability: is the system still usable?
• Availability can be improved by adding more hardware

(e.g.,ECC, disk arrays) that provides some redundancy
• In the case of I/O, simplest redundant system is mirroring:

write each data on two disks.
– Cost: double the amount of hardware
– Performance: no increase (in fact might be worse for writes since

has to wait for the longest of the two to complete)
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RAIDs

• Concept of striping: data written consecutively on N disks
• Performance wise: no improvement in latency but

improvement in throughput (parallelism)
• But now probability of failure is greater
• So add disks (redundant arrays of inexpensive disks)

– Mirroring = RAID1
– RAID 5: interleave the parity sectors on the disks


