
1

2/15/99 CSE378 Pipelining hazards 1

Control unit extension for data hazards

IF ID EX Mem WB

IF/ID

ID/EX
EX/Mem

Mem/WB

Control
Unit

Forwarding unit

Hazard detection
unit

2/15/99 CSE378 Pipelining hazards 2

Forwarding unit

• Forwarding is done prior to ALU computation in EX stage
• If we have an R-R instruction, the forwarding unit will

need to check
– whether EX/Mem result register = IF/ID rs
– EX/Mem result register = IF/ID rt
– and if so set up muxes to ALU source appropriately

• and also whether
– Mem/WB result register = IF/ID rs
– Mem/WB result register = IF/ID rt
– and if so set up muxes to ALU source appropriately

2

2/15/99 CSE378 Pipelining hazards 3

Forwarding unit (ct’d)

• For a Load/Store or Immediate instruction
– Need to check forwarding for rs only

• For a branch instruction
– Need to check forwarding for the registers involved in the

comparison

2/15/99 CSE378 Pipelining hazards 4

Forwarding in consecutive instructions

• What happens if we have
 add $10,$10,$12
 add $10,$10,$12
 add $10,$10,$12
Forwarding priority is given to the most recent result, that is the one

generated by the ALU in the EX/Mem, not the one passed to
Mem/Wb

3

2/15/99 CSE378 Pipelining hazards 5

Hazard detection unit

• If a Load (instruction i-1) is followed by instruction i that
needs the result of the load, we need to stall the pipeline
for one cycle , that is
– instruction i-1 should progress normally
– instruction i should not progress
– no new instruction should be fetched

• The hazard detection unit should operate during the ID
stage

• How do we know instruction i-1 is a Load
– Memread signal asserted in ID/EX

2/15/99 CSE378 Pipelining hazards 6

Hazard detection unit (c’d)

• How do we know we should stall
– instruction i-1 is a Load and either
– ID/EX rt = IF/ID rs
– or ID/EX rt = IF/ID rt

• How do we prevent instruction i to progress
– Put 0’s in all control fields of ID/EX (becomes a no-op)
– Don’t change the IF/ID field (have a control line be asserted at

every cycle to write it unless we have to stall)

• How do we prevent fetching a new instruction
– Have a control line asserted only when we want to write a new

value in the PC

4

2/15/99 CSE378 Pipelining hazards 7

Control hazards

• Pipelining and branching don’t get along
• Transfer of control (jumps, procedure call/returns,

successful branches) cause control hazards
• When a branch is known to succeed, at the Mem stage,

there are instructions in the pipeline that are the
instructions
– We’ll need to convert these instructions into “no-op”
– We’ll need to start fetching the correct instructions by using the

right PC

2/15/99 CSE378 Pipelining hazards 8

Example of control hazard
Branch decision known at
this stage

Beq $12,$13,L

These 3 instructions are wrong
if branch is successful

The PC is correct and we
fetch the right instruction

IF

IF

IF

IF

IF

5

2/15/99 CSE378 Pipelining hazards 9

Resolving control hazards

• Detecting a potential control hazard is easy
– Look at the opcode

• We must insure that the state of the program is not changed
until the outcome of the branch is known. Possibilities are:
– Stall as soon as opcode is detected (cost 3 bubbles; same type of

logic as for the load stall but for 3 cycles instead of one)
– Assume that branch won’t be taken (cost only if branch is taken;

see next slides)
– Use some predictive techniques

2/15/99 CSE378 Pipelining hazards 10

Assume branch not taken strategy

• We have a problem if branch is taken!
• “No-op” the “wrong” instructions

– Once the new PC is known (in Mem stage)
• Zero out the instruction field in the IF/ID pipeline register
• For the instruction in the ID stage, use the stall signals that were set-

up for data dependencies in the Load case
• For the instruction in the EX stage, zero out the result of the ALU

(e.g, make the result register be register $0)

6

2/15/99 CSE378 Pipelining hazards 11

Optimizations

• Move up the result of branch execution
– Do target address computation in ID stage (like in multiple cycle

implementation)
– Comparing registers is “fast”; can be done in first phase of the

clock and setting PC in the second phase.
– Thus we can reduce stalling time by 1 bubble

• In the book, they reduce it by 2 bubbles but… .
– The organization as shown is slightly flawed (they forgot about

extra complications in forwarding … .)

2/15/99 CSE378 Pipelining hazards 12

Branch prediction

• Instead of assuming “branch not taken” you can have a
table keeping the history of past branches
– We’ll see how to build such tables when we study caches
– History can be restricted to 2-bit “saturating counters” such that it

takes two wrong prediction outcomes before changing your
prediction

– If predicted taken, will need only 1 bubble since PC can be
computed during ID stage.

– There even exists schemes where you can predict and not lose any
cycle on predicted take, of course if the prediction is correct

• Note that if prediction is incorrect, you need to flush the
pipe as before

7

2/15/99 CSE378 Pipelining hazards 13

Current trends in microprocessor design

• Superscalar processors
– Several pipelines, e.g., integer pipeline(s), floating-point,

load/store unit etc
– Several instructions are fetched and decoded at once. They can be

executed concurrently if there are no hazards

• Out-of-order execution (also called dynamically scheduled
processors)
– While some instructions are stalled because of dependencies or

other causes (cache misses, se later), other instructions down he
stream can still proceed.

– However results must be stored in program order!

2/15/99 CSE378 Pipelining hazards 14

Current trends (ct’s)

• Speculative execution
– Predict the outcome of branches and continue processing with (of

course) a recovery mechanism.
– Because branches occur so often, the branch prediction

mechanisms have become very sophisticated

• VLIW (or EPIC) (Very Long Instruction Word)
– Each pipeline (functional unit) is assigned a task at every cycle.

The compiler does it.

