Flow of Control -- Conditional branch instructions

* You can compare directly
— Equality or inequality of two registers
— Oneregister with0 (>, <, 3, £)

» and branch to atarget specified as

— asigned displacement expressed in number of instructions (not
number of bytes) from the instruction following the branch

— inassembly language, it is highly recommended to use labels and
branch to labeled target addresses because:

 the computation above istoo complicated
« some pseudo-instructions are translated into two real instructions

1/15/99 CSE378 Instr. encoding. (ct'd)

Examples of branch instructions

Beq rs,rt,target #gototargetifrs=rt

Begz rs, target #gototargetifrs=0

Bne rs,rttarget #gototarget if rs!=rt

Bltz rs, target #gototargetif rs<0
etc.

but note that you cannot compare directly 2 registersfor <, > ...

1/15/99 CSE378 Instr. encoding. (ct'd)

Comparisons between two registers

» Useaninstruction to set athird register
St rd,rsrt #rd=1lifrs<rtelserd=0
dtu rd,rs,rt #same but rs and rt are considered unsigned

e Example: Branchto Labl if $5 < $6
slt $10,$5,$6 #$10=1if $5 < $6 otherwise $10=0
bnez $10,Labl #branchif $10=1, |.e., $5<$6
» There exist pseudo instructionsto help you!
bit $5,$6,Labl # pseudo instruction translated into
#dt $1,$5,%6
#bne $1,$0,Labl
Note the use of register 1 by the assembler
1/15/99 CSE378 Ingtr. encoding. (ct’d) 3

Unconditional transfer of control

 Canuse“begz %0, target” but limited range (+32K instr.)
» Use of Jump instructions

jump target #specia format for target byte address (26 hits)
jr $rs #ump to address stored inrs (good for switch
#statements and transfer tables)
» To cal/return functions and procedures
ja target #ump to target address; save PC of
#following instruction in $31 (aka $ra)
jr $31 # jump to address stored in $31 (or $ra)
Also possibletouse jar rsrd # jump to address stored inrs; rd = PC of

following instructionin rd

1/15/99 CSE378 Instr. encoding. (ct'd) 4

Branch addressing format

» Need Opcode, one or two registers, and an offset
— No baseregister since offset added to PC
* When using one register, can use the second register field
to expand the opcode
— similar to function field for arith instructions
beq $4,$5,1000

4 I's 4]
Opc | rs|rt/fung target offset

bgtz>&$4,1000 '

1/15/99 CSE378 Instr. encoding. (ct'd)

How to address operands

* ThelSA specifies addressing modes

* MIPS, asaRISC machine has very few addressing modes
register mode. Operand isin aregister
base or displacement or indexed mode

e Operand isat address “ register + 16-hit signed offset”
immediate mode. Operand is a constant encoded in the instruction
PC-relative mode. Asbase but the register is the PC

1/15/99 CSE378 Instr. encoding. (ct'd)

Some interesting instructions. Multiply

* Multiplying 2 32-bit numbers yields a 64-bit result
— Useof HI and LO registers

Mult rsrt #HI/LO =rs*t

Multu rsrt

Then need to move the HI or LO or both to regular registers

mflo rd #d=LO

mfhi rd #rd=HlI

Once more the assembler can come to the rescue with a pseudo inst
mul rd,rs,rt #generates mult and mflo

#and mfhi if necessary

1/15/99 CSE378 Instr. encoding. (ct'd)

Some interesting instructions. Divide

» Similarly, divide needs two registers
— LO getsthe quotient
— HI getsthe remainder

» |f anoperand is negative, the remainder is not specified by
the MIPS | SA.

1/15/99 CSE378 Instr. encoding. (ct'd) 8

Logic instructions

Used to manipulate bits within words, set-up masks etc.
A sample of instructions

and rd,rs,rt #rd=AND(rs,rt)
andi rd,rsimmed

or rd,rs,rt

xor rd,rs,rt

Immediate constant limited to 16 hits. If more use Lui.

Thereis a pseudo-instruction NOT

not rt,rs #does 1's complement (bit by bit
#complement of rsin rt)

1/15/99 CSE378 Instr. encoding. (ct'd) 9

Example of use of logic instructions

* Create amask of al 1’'sfor the low-order byte of $6. Don’t
care about the other bits.

ori $6,$6,0x00ff #$6[7:0) setto I's
» Clear high-order byte of register 7 but leave the 3 other
bytes unchanged
|ui $5,0x00ff #$5 = 0x00ff0000
ori $5,$5,0x(ffff #$5 = OxOOffffff
and $7,$7,$5 #$7 =0x00...... (...whatever was
#there before)

1/15/99 CSE378 Instr. encoding. (ct'd) 10

Shift instructions

* Logica shifts-- Zeroes are inserted

sli rd,rt,shm #left shift of shm bits; inserting 0’son
#theright

sl rd,rt,shm #right shift of shm bits; inserting 0’'s
#on the left

 Arithmetic shifts (useful only on the right)
— sra rd,rt,shm # Sign bit isinserted on the left

» Example let $5 = ff00 0000

gl $6,$5,3 #$6 = 0xf800 0000
sl $6,$5,3 #$6 = Ox1fe0 0000
5a$6,$5,3 #$6 = Oxffe0 0000
1/15/99 CSE378 Instr. encoding. (ct'd) 11

Example -- High-level language

int 8[100];
inti;

for (i=0;i<100;i++){

ali] = 5;
}

1/15/99 CSE378 Instr. encoding. (ct'd) 12

Assembly language version

Assume: start address of array ainrl5.
We user8 to store the value of i and r9 for the value 5

add $8,$0,$0 #initializei

li $9,5 #r9 has the constant 5
Loop: mul $10,$8,4 #r10 hasiin bytes
#could use a shift left by 2

addu $14,%$10,$15 #address of i

Sw $9,0($14) #store5indi]

addiu $8,$8,1 #increment

bit $8,100,Loop #branch if loop not finished

#taking lots of liberty here!

1/15/99 CSE378 Instr. encoding. (ct'd) 13

Machine language version (generated by SPIM)

[0x00400020] 0x00004020 add $8, $0, $0 ;Liadd $8,%0,$0
[0x00400024] (0x34090005 ori $9, $0, 5 200 $9,5
[0x00400028] 0x34010004 ori $1, $0, 4 ;3mul - $10,$8,4
[0x0040002c] 0x01010018 mult $8, $1

[0x00400030] 0x00005012 mflo $10

[0x00400034] 0x014f7021 addu $14, $10, $15 ;4:addu $14,$10,$15

[0x00400038] Oxadc90000 sw $9, 0($14) 5iaw $9,0($14)
[0x0040003c] 0x25080001 addiu $8, $8, 1 6 addiu $8,$8,1
[0x00400040] 0x29010064 siti $1, $8, 100 ;7:blt $8,100,Loop

[0x00400044] Ox1420fff9 bne $1, $0, -28 [L.oop-0x00400044]

1/15/99 CSE378 Instr. encoding. (ct'd) 14

