
CSE 378 Winter 1998

Machine Organization and Assembly Language Programming

Midterm

Friday February 13th

NAME :

Do all your work on these pages. Do not add any pages. Use back pages if
necessary. Show your work to get partial credit.

This exam is worth 50 points. After each question, you will �nd the number
of points it is worth. You should spend approximately x minutes on a question
worth x points (e.g., 5 minutes on question 1 worth 5 points). That will leave
you with 10 minutes to look over your work.

1. 5 points

2. 6 points

3. 10 points

4. 5 points

5. 12 points

6. 12 points

1

1. (5 points)

Suppose register $t1 contains 0xFFFFFFF6 and register $t2 contains 0x0000000A.
What is the result (in hexadecimal) in register $t0 after each of the following
instruction executes (if there is an overow/underow, say so):

add $t0, $t1, $t2 #$t0 = 0x00000000

sub $t0, $t1, $t2 #$t0 = 0xFFFFFFEC

sll $t0, $t1, 3 #$t0 = 0xFFFFFFB0

sra $t0, $t1, 3 #$t0 = 0xFFFFFFFE

Consider the instruction

Loop: jal foo

and suppose that Loop is at address 0x00040024 and foo at address 0x00041234.
What is the content of Register $ra (register 31) after the jal instruction has
been executed?

0x00040028

2. (6 points)

Consider two implementations M1 and M2 of the same ISA. We are interested
in the performances of two programs P1 and P2. P1 and P2 have the following
respective instruction mixes:

Operations P1 P2

Load/Store 40% 50%
ALU operations 50% 20%
Branches 10% 30%

and the CPI's for each machine are:

(a) Assume that the clock rate of M1 is 200MHz. What should be the clock
rate of M2 so that both machines have the same execution time for P1.

2

Operations M1 M2

Load/Store 2 2
ALU operations 1 2
Branches 3 2

Since both machines execute the same number of instructions and take the same
time for execution, we must have:

(CPI on M1)=(M1 clock rate) = (CPI on M2)=(M2 clock rate)

(:4� 2 + :5� 1 + 0:1� 3)=200 = 2=(M2 clock rate)

i.e.,

(M2 clock rate) = (2� 200)=1:6 = 250MHz

(b) Assume now that both machines have the same clock rate and that P1 and
P2 execute the same number of instructions. Which machine is faster for a
workload consisting of equal runs of P1 and P2.

Ex: time M1

Ex: time M2
=

CPI on M1

CPI on M2
= (1:6 + 2:1)=4 = 3:7=4:0

M1 is faster by 8% (4/3.7 = 1.08)

(c) Find a workload (using only P1 and P2) that makes M1 and M2 have the
same performance when they have the same clock rate.

If x is the proportion of P1 runs, we must have:

x� (CPI of P1 on M1) + (1� x)� (CPI of P2 on M1) = 2

x = 0:2

We need 1 run of P1 and 4 runs of P2

3. (10 points)

Suppose you had one opcode left and you wanted to add one instruction to the
MIPS ISA to manufacture the MIPS 9999.

(a) Which of the following 3 instructions could be encoded using one of the
current MIPS instruction formats (justify your answer by showing how the in-
struction is encoded and the other two cannot be encoded):

ADDW $rt, address($rs) # rt = rt + Mem[rs + address]

3

ADD2W $rd, $rt, address($rs) # rd = rt + Mem[rs + address]

ADDIW $rd, immed, address($rs) # rd = immed + Mem[rs + address]

where address and immed are 16-bit signed integers.

ADDW could be encoded like a \LW" (6 bits for opcode, 5 each for the registers,
and 16 bits for the o�set of the address).

ADD2W needs another 5 bit �eld for the third register. Hence it is not possible.

ADDIW needs (wrt to ADDW) another 16 bit for the immediate. Not possible.

(b) Assuming that you now include the instruction that you can encode in the
MIPS 9999, can you still say that the MIPS 9999 is a RISC machine? Justify
your answer in one sentence.

No. The ADDW concept violates the \load-store" concept that all non-memory
operations only use registers as operands

(c) You now decide to build the MIPS 9999 using a multiple cycle implemen-
tation. In addition to adding some busses and extending some multiplexers, do
you need to add major resources (ALU, Memory, Registers) to the data path
shown for the MIPS in the book (reproduced on the next page)? If so which
one, if not why not (you do NOT need to trace the data path in either case).

How many cycles would it take to execute the new instruction?

You do not need any new resources. Proceed like in a LW but instead of storing
the MDR in the register �le in cycle 5, you add it to the register and, in a 6th
cycle, write the result.

You need to extend the multiplexers that control the inputs to the ALU and add
a bus from the MDR to one of these multiplexers.

4. (5 points)

(a) In the MIPS ISA which class(es) of instructions rely on the fact that in-
structions always start on a word boundary?

Branch and jump instructions

(b) Is the call/callee protocol relative to procedures described in class the only
possible one with respect to the $s and $t registers? If not, give another possi-
bility.

No, there are zillions of possibilities. For example, have the caller save all $s
and $t registers.

4

(c) Is an instruction like LBU (load byte unsigned) absolutely necessary? If
not, is there a sequence of MIPS instructions that could be used to achieve the
same e�ect and if so what instructions would be used in that sequence. (You
don't have to write the sequence; just describe it. Also assume that memory can
only be accessed through a LW (load word) instruction that accesses memory
locations on a word boundary.)

LBU is not necessary. Perform a LW followed by shifts left and right of either
8, 16, or 24 bits depending on the byte adddress. You could also use shift and
some logical operations with adequate masks.

5. (12 points)

You are to design a subset of the data path and indicate the control lines for a
stack based machine with the following speci�cations.

All instructions are 16 bits long and operate on 16 bit data. Instead of a
register �le, data is accessed from stack memory which supports pushes and
pops as shown below. There is data memory, distinct from stack memory, and
instruction memory. Data, stack and instruction memory all use 16 bit adresses.

In this machine the stack pointer is hardwired and stack memory operates as
follows:

D A
Stack Memory

item (16-bit) most recentitem (16-bit) to be pushed

StckPush StackPop

On a \push", triggered by the signal StckPush, the contents of register D are
stored on the top of the stack and the hardwired stackpointer is incremented

5

by 2. On a \pop", triggered by the signal StckPop, the hardwired stackpointer
is decremented by 2 and the top of the stack is written in register A.

Sketch (on the next page) the datapath and label the control signals necessary to
support the 3 operations Store, Load, ADD (this is not an all inclusive list but
you only need to concern yourself with these 3). Note that the semantics of these
operations are slightly di�erent from those of the JVM that you programmed;
This is to make your task easier.

� Store: pop data to be stored in data memory from stack, pop address at
which to store the data from the stack, perform the store (write) in data
memory.

� Load: pop address at which to load the data from data memory, load
(read) the desired data, push data onto the stack memory.

� ADD: pop data value1, pop data value 2, add, push result onto stack.

Use a multiple-cycle datapath design. Assume that only one memory (either
instruction, data, or stack) can be accessed in each cycle. Use a single ALU.
You may use as many multiplexers, registers, and buses as necessary. Describe
succinctly what happens in each cycle.

Hint: in addition to the D and A registers of the �gure, you'll need AT LEAST

a PC, an IR and another \temporary" register.

D A
Stack Memory

StckPush StackPop

B

Read Write

Data memoryaddress

data

PC Instruction
memory

IR

Control

ALU

PCwrite Read

ALUsrc1

ALUsrc2

Dselect

+2

6

6. (12 points)

In this question, you are asked to write a small program in MIPS assembly lan-
guage. You won't be graded down if you forget the exact name of an instruction
or the place of a comma as long as you respect the spirit of the MIPS instruction
set. You can use pseudo-instructions, such as la used below, as long as they
would be recognized by SPIM.

The program you have to write is a linear search function, i.e., a function that
searches for a key in an array of integer elements (32-bit) array of size size
elements.

The calling sequence is:

la $a0, arradd #1st parameter is address of array

lw $a1, size #2nd parameter is size of array

lw $a2, key #3rd parameter is key to search for

jal linear

You should NOT assume that linear is a leaf procedure (i.e., in further exten-
sions, it might be that linear would call another procedure).

Your function should return in $vo the index of the �rst element of the array
that matches the key and return the value -1 in $vo if there is no match.

Without trying to optimize and without saving the parameters:

linear: sw $ra, 0($sp) # save return address

subu $sp,$sp,4 # since not leaf procedure

li $t0,0 # t0 will be index

loop: beq $t0,$a1,notfnd # no match

lw $t1,0($a0) # get next element

beq $t1,$a2,match # found a match

addi $a0,$a0,4 # otherwise compute address of

next element

addi $t0,$t0,1 # and index of next element

j loop # and iterate

match: move $v0,$t0 # index in result register

j out

notfnd: li $v0,-1 # not found flag

out: addu $sp,$sp,4 # restore return address

lw $ra, 0($sp) #

jr $ra

7

If you don't like destroying/using the $a registers, move them to $t registers.

If you are a super-optimizer, you could save 1 or 2 instructions by using $v0
everywhere there is $t0.

8

