CSE 378 Winter 1999

Machine Organization and Assembly Language Programming

Problem Set #9
Due: Thursday, March 11

In this assignment you will write in C or C++ the skeleton of a trace-driven
simulator for assessing the performance of a cache.

Trace-driven simulation is a widely used technique to assess the performance of
the components of the memory hierarchy. In broad terms, the simulator works
as follows:

Input

e A trace, i.e., a string of memory references.

e One or more cache descriptions (I-cache, D-cache, cache hierarchy) with
size, associativity, block size, and replacement algorithm.

e A write policy.

e Access times of the various components of the memory hierarchy.

Output

e A set of statistics, e.g. hit ratio, or more precisely read hits, write hits,
average memory access time, etc.

e Cycles spent waiting at the various levels of the memory hierarchy, etc.

Algorithm

e Process each memory reference in turn. Decompose the address into (tag,
index, displacement) components.

e Check if the memory reference hits in the appropriate cache (note that you
don’t bring data into the simulated cache, you only simulate the presence
or absence of particular blocks).

e Take appropriate actions. In case of a hit, record statistics, maybe turn
on some valid/dirty bits, etc. In case of a miss, bring in the missing block,
replace an old one, record statistics, etc.

Your assignment is to write a D-cache simulator in C or C++. It will support
a variety of cache sizes, block sizes, organizations, and write policies, and must
conform to the following specifications.

Some code will be given to you to assist in parsing the arguments to the program
and in reading trace files. Your program should probably look something like
this:

#include "trace.h"

main(int argc, char** argv)

{
Cachelnfo ci;
TraceCode tc;
unsigned int address;
int count;
int read_hits, read_misses;
int write_hits, write_misses;
int bytes_written_back;
parse_args(&ci, argc, argv);
while ((tc = get_next_reference(&address, &count)) != TraceEQF)
{
switch(tc)
{
case TraceRead:
/* process a read reference */
break;
case TracelWrite:
/* process a write reference x/
break;
default:
/* an error in the trace file, print a message and abort. */
break;
X
X
show_statistics(read_hits, read_misses, write_hits, write_misses,
bytes_written_back);
}

parse_args, get_next_reference, and show_statistics will be provided in
the trace.c and trace.h files available on the course web “Software” page.

e parse_args takes a pointer to a Cachelnfo structure, as well as the argc
and argv arguments passed to main. It will parse the program arguments
and fill in the fields of the Cachelnfo structure, defined like this:

typedef struct
{
int cachesize;
enum { DirectMapped, TwoWayLRU } organization;
int blocksize;
enum { WriteThrough, WriteBack } policy;
} Cachelnfo;

cachesize is the total size of the cache data in bytes. It will be a power
of 2 between 4 and 1024, inclusive. blocksize is the sizes, in bytes, of
a single cache block. It will be a power of 2 between 4 and cachesize,
inclusive.

If policy is set to WriteThrough, you should simulate writing both the
cache and the memory on a write hit, and only the memory on a write
miss (a write-around policy). If policy is WriteBack, write hits should
write only the cache, while write misses should allocate a block in the
cache for writing to (a write-allocate policy).

If the cache is 2-way, then each time you place a block in the cache you
have 2 possibilities for where to put it. You should decide by looking at
the two blocks already in those locations in the cache, checking things in
this order:

1. Replace a block that is invalid, if there is one. Otherwise,

2. (write-back policy only) replace a block that is not dirty, if there is
one. Otherwise,

3. replace the block that was used least recently. A block is “used”
when it when either a read or write reference touches it.

e get_next_reference fetches the next reference from the input trace file.
It places the address referenced in the first pointer passed to it, and the
count of references read so far in the second (this could be used to de-
termine which reference is least recently used). The function returns
TraceRead if it is a read reference, TraceWrite if it is a write reference,
and TraceEQF if there are no more references in the trace. Any other
return code indicates a syntax error in the trace file.

e show_statistics takes some statistics you must collect and prints them
out. You should pass it

— the number of reads which hit in the cache

— the number of reads which missed in the cache

— the number of writes which hit in the cache
— the number of writes which missed in the cache

— the total number of bytes written to memory. Assume that all write
instructions are word-sized, and that a write-through policy only
sends the word written to memory. Your simulator should have only
a single dirty bit per cache block.

Running the program

Your program will be invoked with the following arguments:

progname cachesize organization blocksize policy tracefile

where cachesize is a number in bytes, organization is either “dm” or “2way”,
blocksize is a number in bytes, policy is either “wt” or “wb”, and tracefile is the
name of a file containing a memory trace. The parse_args function will parse
these arguments into the Cachelnfo structure for you. If an illegal combination
of arguments is given, parse_args will not return — you do not need to handle
error cases.

A sample command line might be:
% ./sim 256 dm 4 wt trace.txt

Your program should then simulate a 256 byte, direct-mapped, write-through
cache with 4 byte cache blocks, running through the memory references in
“trace.txt”.

Trace files

Sample trace files will be provided to you on the course web page, but you will
need to also produce your own for testing purposes. Trace files have a simple,
one line per reference format:

code address

code address
0 0

where each “address” is a 32-bit address in hexadecimal and each “code” is 1
to indicate a read and 2 to indicate a write. The trace is terminated by a line
with code and address both zero.

