
CSE 378 Winter 1999

Machine Organization and Assembly Language Programming

Problem Set #9

Due: Thursday, March 11

In this assignment you will write in C or C++ the skeleton of a trace-driven
simulator for assessing the performance of a cache.

Trace-driven simulation is a widely used technique to assess the performance of
the components of the memory hierarchy. In broad terms, the simulator works
as follows:

Input

� A trace, i.e., a string of memory references.

� One or more cache descriptions (I-cache, D-cache, cache hierarchy) with
size, associativity, block size, and replacement algorithm.

� A write policy.

� Access times of the various components of the memory hierarchy.

Output

� A set of statistics, e.g. hit ratio, or more precisely read hits, write hits,
average memory access time, etc.

� Cycles spent waiting at the various levels of the memory hierarchy, etc.

Algorithm

� Process each memory reference in turn. Decompose the address into (tag,
index, displacement) components.

� Check if the memory reference hits in the appropriate cache (note that you
don't bring data into the simulated cache, you only simulate the presence
or absence of particular blocks).

� Take appropriate actions. In case of a hit, record statistics, maybe turn
on some valid/dirty bits, etc. In case of a miss, bring in the missing block,
replace an old one, record statistics, etc.

1

Your assignment is to write a D-cache simulator in C or C++. It will support
a variety of cache sizes, block sizes, organizations, and write policies, and must
conform to the following speci�cations.

Some code will be given to you to assist in parsing the arguments to the program
and in reading trace �les. Your program should probably look something like
this:

#include "trace.h"

main(int argc, char** argv)

{

CacheInfo ci;

TraceCode tc;

unsigned int address;

int count;

int read_hits, read_misses;

int write_hits, write_misses;

int bytes_written_back;

parse_args(&ci, argc, argv);

while ((tc = get_next_reference(&address, &count)) != TraceEOF)

{

switch(tc)

{

case TraceRead:

/* process a read reference */

break;

case TraceWrite:

/* process a write reference */

break;

default:

/* an error in the trace file, print a message and abort. */

break;

}

}

show_statistics(read_hits, read_misses, write_hits, write_misses,

bytes_written_back);

}

parse_args, get_next_reference, and show_statistics will be provided in
the trace.c and trace.h �les available on the course web \Software" page.

2

� parse_args takes a pointer to a CacheInfo structure, as well as the argc
and argv arguments passed to main. It will parse the program arguments
and �ll in the �elds of the CacheInfo structure, de�ned like this:

typedef struct

{

int cachesize;

enum { DirectMapped, TwoWayLRU } organization;

int blocksize;

enum { WriteThrough, WriteBack } policy;

} CacheInfo;

cachesize is the total size of the cache data in bytes. It will be a power
of 2 between 4 and 1024, inclusive. blocksize is the sizes, in bytes, of
a single cache block. It will be a power of 2 between 4 and cachesize,
inclusive.

If policy is set to WriteThrough, you should simulate writing both the
cache and the memory on a write hit, and only the memory on a write
miss (a write-around policy). If policy is WriteBack, write hits should
write only the cache, while write misses should allocate a block in the
cache for writing to (a write-allocate policy).

If the cache is 2-way, then each time you place a block in the cache you
have 2 possibilities for where to put it. You should decide by looking at
the two blocks already in those locations in the cache, checking things in
this order:

1. Replace a block that is invalid, if there is one. Otherwise,

2. (write-back policy only) replace a block that is not dirty, if there is
one. Otherwise,

3. replace the block that was used least recently. A block is \used"
when it when either a read or write reference touches it.

� get_next_reference fetches the next reference from the input trace �le.
It places the address referenced in the �rst pointer passed to it, and the
count of references read so far in the second (this could be used to de-
termine which reference is least recently used). The function returns
TraceRead if it is a read reference, TraceWrite if it is a write reference,
and TraceEOF if there are no more references in the trace. Any other
return code indicates a syntax error in the trace �le.

� show_statistics takes some statistics you must collect and prints them
out. You should pass it

{ the number of reads which hit in the cache

{ the number of reads which missed in the cache

3

{ the number of writes which hit in the cache

{ the number of writes which missed in the cache

{ the total number of bytes written to memory. Assume that all write
instructions are word-sized, and that a write-through policy only
sends the word written to memory. Your simulator should have only
a single dirty bit per cache block.

Running the program

Your program will be invoked with the following arguments:

progname cachesize organization blocksize policy trace�le

where cachesize is a number in bytes, organization is either \dm" or \2way",
blocksize is a number in bytes, policy is either \wt" or \wb", and trace�le is the
name of a �le containing a memory trace. The parse_args function will parse
these arguments into the CacheInfo structure for you. If an illegal combination
of arguments is given, parse_args will not return { you do not need to handle
error cases.

A sample command line might be:

% ./sim 256 dm 4 wt trace.txt

Your program should then simulate a 256 byte, direct-mapped, write-through
cache with 4 byte cache blocks, running through the memory references in
\trace.txt".

Trace �les

Sample trace �les will be provided to you on the course web page, but you will
need to also produce your own for testing purposes. Trace �les have a simple,
one line per reference format:

code address
...

...
code address
0 0

where each \address" is a 32-bit address in hexadecimal and each \code" is 1
to indicate a read and 2 to indicate a write. The trace is terminated by a line
with code and address both zero.

4

