
CSE 378 Winter 1999

Machine Organization and Assembly Language Programming

Problem Set #5

Due: Thursday, February 11

This assignment is the continuation of Assignment #3. You are going to com-
plete the simulation of the JVM and test your program on a JVM program that
you will write yourself.

The JVM machine

The JVM is a stack machine. This means as you have seen in Assignment
#2 that arithmetic instructions will take their source operands from the top of
the stack (popping twice) and store (push) the result on top of the stack (by
convention, the JVM stack grows \upwards", i.e., towards increasing addresses).
In addition to the stack, the JVM provides local storage for variables. The
instructions for loading/storing local variables to/from the stack are described
below.

Instruction semantics

In Assignment #3 you were given the syntax of the bytecodes, i.e., the op-
code and the type of operands following a given opcode. We now describe the
semantics of the bytecodes, i.e., the meaning associated with each opcode.

The arithmetic instructions (IADD,ISUB,IMUL,IDIV) all operate on signed
32-bit integers but you don't have to worry about over
ow. For ISUB, the result
is (v2 - v1) (v1 is at the top of the stack). For IDIV, the result is the integer
quotient of (v2/v1). For IDIV, you don't have to worry about the remainder.

The local variable instructions (ILOAD, ISTORE) have a one-byte operand
that has to be interpreted as an unsigned index value. This index determines
the location (a word) within the local storage area that should be Pushed on
top of the stack (ILOAD) or Poped from the stack in the location (ISTORE).
You may assume that 256 variables will be enough and that this area won't
over
ow (of course in a real implementation you might have a larger index as
well as routines to check for over
ow and under
ow). Each variable stored in
the local storage is a 32-bit signed integer.

The two other local variable instructions (IALOAD, IASTORE) also load/store
to/from the stack in a location in local storage but now instead of the index
being given in the instruction, the value of the index is the value of the location
on top of the stack. That is if the local storage area looks like (the left column
is the index, the right column is the contents of the local storage area):

1

0 17

1 73

2 4

3 27

4 13

etc.

and if the stack looks like

214

19 <---- ``below'' top of the stack

3 <---- top of the stack

The bytecode IALOAD will result in the new stack con�guration

214

19

27 <---- top of the stack

IASTORE stores the element below the top of the stack at the local storage
location whose index is on the top of the stack. Then the two top entries on
the stack are popped. That is with the same initial conditions as before the
IALOAD above, IASTORE would result in

0 17

1 73

2 4

2

3 19

4 13

etc.

and

214 <---- top of the stack

The immediate instructions (BIPUSH, SIPUSH) are followed respectively by
an 8-bit and a 16-bit signed immediate value. When BIPUSH is executed, the
8-bit immediate value is to be sign-extended to 32 bits and Pushed on top of
the stack. For SIPUSH, the immediate value is calculated as
(immed1 << 8) OR immed2
(where << is a logical left shift) and then sign-extended to 32 bits and Pushed
on top of the stack (i.e., \SIPUSH 0x80 0x01" will push the 32-bit value
0x��8001 on top of the stack and \SIPUSH 0x01 0x80" will push the 32-bit
value 0x00000180).

The duplicate instructions duplicate the top of the stack (DUP) or the two top
locations of the stack (DUP2). With the initial stack:

214

19

3 <---- top of the stack

DUP would result in

214

19

3

3 <---- top of the stack

3

and DUP2 would result in

214

19

3

19

3 <---- top of the stack

The branch instructions (IFNE, IFEQ, IFLE, IFLT, IFGE, IFGT) com-
pare the top of the stack to the value 0 and then pop the top of the stack.
These instructions as well as GOTO are followed by 2 bytes: o�set1 and o�-

set2. If the comparison is successful and in the case of the GO TO, the control
in the interpreted program is transferred to the instruction whose o�set, IN
BYTES, relative to the start address of the branch instruction is computed as
(offset1 << 8) OR offset2 (e.g., \GOTO 0x00 0x03" is a no-op since it trans-
fers to the instruction following the GOTO; \GOTO 0x� 0xfd" will transfer to
the instruction whose start is 3 bytes before the GOTO).

Finally, the POP instruction discards the top of the stack and the IRETURN
instruction signals the end of the computation (in this simpli�ed machine we
don't have call/return facilities). The value at the top of the stack is popped
and used as the return value to the main program.

Your task

Complete the JVM interpreter that you started in Assignment #3. Recall that
the basic structure of the interpreter should be a loop that will go through the
5 steps

1. Fetch the next bytecode

2. Decode it

3. Fetch the operands (if any)

4. Execute the operation

5. Store the results (if any)

You should test your interpreter on test programs of your own so that every
bytecode is used at least once.

You will be turning in both:

4

� your JVM interpreter function (written in MIPS assembly), and

� an array computation program (written in JVM)

The JVM program you have to write is an extension of Part I of Assignment
#3, and is described in the next section.

The environment provided to you

The environment is almost the same as in Assignment #3. Your interpreter
routine should be called java interpret. It will be called with three arguments:

� the starting address of the program in $a0

� the initial adddress of the top of the JVM stack in $a1

� the address of the local storage area in $a2

The JVM program you'll have to write has the same speci�cations as Part I of
Assignment #3 except that in addition to computing

� the number of elements strictly greater than the �rst element

� the number of elements smaller than or equal to the last element

you will also compute

� the minimum element

� the maximum element

� the (integer) average of all elements

Your JVM program for doing the array computation will be called with the
number of elements in the array in local storage location 0, and the array items
themselves in local storage starting at location 1. When it returns, the local
storage should contain:

location contains

0 size of array (unchanged)
1 number of elements strictly greater than the �rst element
2 number of elements smaller than or equal to the last element
3 minimum array element
4 maximum array element
5 integer average of all elements

Note that these return values will overwrite the contents of the array itself.

5

Be careful that the array and the few extra variables that you will need must �t
in the local storage area which is limited to 256 variables. The arrays we test
your function with will contain between 1 and 200 elements (inclusive).

It is important to remember that your JVM interpreter will need to be capable
of running any legal JVM bytecode program, not just the one that you submit
for doing the array computation! Conversely, your JVM program for array
computation should run inside any correct JVM interpreter.

The JVM assembler

On the \Software" page of the course web there is a simple assembler for JVM
code. You may use this program to translate a text �le of JVM instructions into
bytecodes suitable for giving to your JVM interpreter. This allows you to use
labels as the targets of branches rather than computing o�sets by hand. Given
input like this:

label: iadd

iload 23

dup2

ifeq label

pop

it will generate this:

.align 2

myprog:

.byte 0x60 # iadd

.byte 0x15, 0x17 # iload

.byte 0x5c # dup2

.byte 0x99, 0xff, 0xfc # ifeq

.byte 0x57 # pop

.byte 0x00 #

.align 2

end_myprog:

You can cut-and-paste this output into the data segment of your JVM inter-
preter source. To run your interpreter on this program, look in the main()

function given to you in jvm.s. Look for the two lines:

la $a1, test1 # "program" memory area, using

la $a2, end_test1 # the copy_mem function.

and replace \test1" with \myprog" to decode and/or interpret this your new
program instead.

6

