
CSE 378 Winter 1999

Machine Organization and Assembly Language Programming

Problem Set #3

Due: Thursday, January 28

In this assignment you'll have to write some simple subroutines in MIPS assem-
bly language using SPIM to debug and test your programs.

Instructions on how to turnin your program as well as test input examples,
how to use them, and how to set-up Part III will be given to you shortly in a
separate handout.

Recall that it is imperative that your programs be commented. Programs
without comments might not be looked at, even if correct!

The �rst two problems are to get you familiar with assembly language. The
third one is to prepare you for assignment #5.

PART I. Write a procedure in MIPS assembly language that �nds the number
of elements strictly greater than the �rst element and the number of elements
smaller than or equal to the last element in an array of integers (each element
is a 32-bit positive, negative, or null integer).

Your procedure will take two arguments: a pointer to the array of integers that
will be passed in register $a0 and the number of elements in the array that will
be passed in register $a1. Your procedure will return the number of elements
strictly greater than the �rst element in $vo and the number of elements smaller
than or equal to the last element in $v1.

Please name your procedure problem1 so that it can be tested easily.

PART II. Write a procedure in MIPS assembly language that converts a char-
acter string of ASCII digits into the integer value represented by the string.
The character string is null terminated and a pointer to it will be given as the
argument in register $a0. The ASCII representation of characters is in your
book page 142 (with the NULL character having the representation 0). Thus
the ASCII string \+24" is represented by the 4 bytes (where the value of each
byte is given in decimal notation) \43", \50", \52", \0".

Your procedure named problem2 should return in register $v0 the value of the
positive, negative or zero representation of the string. If the string is valid, i.e.,
is a sign followed by a series of digits, or a series of digits, register $v1 should
contain 0. Otherwise, if the string is not valid (e.g., contains a letter, or a digit
followed by a sign etc.) the value returned in $v0 is immaterial but register $v1
should contain a 1.

1

PART III. In this problem we are setting the stage for the forthcoming pro-
gramming assignment #5.

Many desk calculators and some machine-independent representations of high-
level programming languages, such as the Java Virtual machine (JVM) for the
very popular Java language, are based on the concept of stack architectures
(recall Problem Set #2).

The JVM is an abstract computing machine that is a stack machine whose
instructions are called bytecodes. A small subset of the JVM instruction set is
in the table below:

Name Bcode Instr. format Stack operations Description

IADD 0x60 IADD POP v1, POP v2, PUSH res Integer add
ISUB 0x64 ISUB POP v1, POP v2, PUSH res Integer sub
IMUL 0x68 IMUL POP v1, POP v2, PUSH res Integer mul
IDIV 0x6b IDIV POP v1, POP v2, PUSH res Integer div (quotient)
ILOAD 0x15 ILOAD index PUSH res Ld from loc. var. at index
ISTORE 0x36 ISTORE index POP v1 St to loc. var. at index
IALOAD 0x2e IALOAD see text in Ass 5 Ld from local
IASTORE 0x4f IASTORE see text in Ass 5 St to local and pop
BIPUSH 0x10 BIPUSH imm PUSH res Byte immediate push
SIPUSH 0x17 SIPUSH imm1 imm2 PUSH res Short immediate push
DUP 0x59 DUP Duplicate top of stack
DUP2 0x5c DUP2 Dupl. top 2 st. entries
POP 0x57 POP POP v1 POP value, discard
IFEQ 0x99 IFEQ o�set1 o�set2 POP v1 Branch on v1 == 0
IFNE 0x9a IFNE o�set1 o�set2 POP v1 Branch on v1 !=0
IFLT 0x9b IFLT o�set1 o�set2 POP v1 Branch on v1 <0
IFLE 0x9e IFLE o�set1 o�set2 POP v1 Branch on v1 <=0
IFGT 0x9d IFGT o�set1 o�set2 POP v1 Branch on v1 >0
IFGE 0x9c IFGE o�set1 o�set2 POP v1 Branch on v1 >=0
GOTO 0xa7 GOTO o�set1 o�set2 none unconditional branch
IRETURN 0xac IRETURN POP v1 Integer return

Each byte code is 1 byte long. An index (as in ILOAD index) is also 1 byte long
(some explanation of what it refers to will be given in assignment #5). imm,
imm1 and imm2 are all immediate values of 1 byte. Thus BIPUSH is followed by
1 byte of immediate while SIPUSH is followed by 2 bytes of immediate. o�fset1
and o�set2 are also 1 byte long meaning that each branch instruction is followed
by a 16-bit o�set (how this is done will be explained in assignment #5).

2

In assignment #5 you will simulate the JVM. The overall process will be:

1. Fetch the next bytecode

2. Decode it

3. Fetch the operands

4. Execute the operation

5. Store the results

This week, you will start implementing the �rst two steps, i.e., your \only" task
is to take as input a sample string of bytecodes and \decode" that string, that
is write out the sequence of instructions that the string meant to execute.

For example, the string of bytecodes:
0x15, 0x12, 0x15, 0x06, 0x60, 0x59, 0x10, 0xa1, 0x64, 0x36, 0x01
should result in:

ILOAD 18

ILOAD 6

IADD

DUP

BIPUSH 161

ISUB

ISTORE 1

You should write your code with the whole sequence of 5 steps above in mind,
i.e., your main program should call one or more subroutines, for example for
decoding (needed in this part of the assignment), for executing (not needed in
this part of the assignment) etc.

You should also have some registers dedicated to some functions of the JVM you
are simulating, for example one for the program counter of the JVM (needed in
this part of the assignment) one for the stack pointer for the JVM stack (not
needed in this part of the assignment and di�erent of course of the $sp of the
SPIM machine) etc.

3

