CSE 378 Autumn 1999

Machine Organization and Assembly Language Programming
Problem Set / Programming Assignment #4
Due: Thursday, October 28

This assignment has two components: (1) Problems from the text relative to
the Single and multiple cycle implementation of the MIPS ISA and (2) a SPIM
program which will be extended in the next assignment (this program is a little
tedious but such is life)

By now, you should be familiar with the material covered in Chapter 5 (Sections
5.1 through 5.4).

Part 1

1. Problems 5.5 and 5.15
2. Problems 5.10

PART II. In this problem we are setting the stage for the forthcoming pro-
gramming assignment #b5.

Many desk calculators and some machine-independent representations of high-
level programming languages, such as the Java Virtual machine (JVM) for the
very popular Java language, are based on the concept of stack architectures
(recall Problem Set #2).

The JVM is an abstract computing machine that is a stack machine whose
instructions are called bytecodes. A small subset of the JVM instruction set is
in the table below:

Each byte code is 1 byte long. An index (as in ILOAD index) is also 1 byte
long (some explanation of what it refers to will be given in assignment #5; at
this point it is sufficient for you to know that index is an unsigned integer).
imm is a signed immediate value of 1 byte, imm1 and imm2 are both 1 byte
long and when concatenated form a signed immediate value of 2 bytes. Thus
BIPUSH is followed by 1 byte of immediate while STIPUSH is followed by 2 bytes
of immediate. offfset! and offset2 are also 1 byte long meaning that each branch
instruction is followed by a 16-bit offset (how this is done will be explained in
assignment #5).

Name Bcode | Instr. format Stack operations Description

IADD 0x60 IADD POP v1, POP v2, PUSH res | Integer add

ISUB 0x64 ISUB POP v1, POP v2, PUSH res | Integer sub

IMUL 0x68 IMUL POP v1, POP v2, PUSH res | Integer mul

IDIV 0x6b | IDIV POP v1, POP v2, PUSH res | Integer div (quotient)
ILOAD 0x15 ILOAD index PUSH res Ld from loc. var. at index
ISTORE 0x36 ISTORE index POP v1 St to loc. var. at index
IALOAD 0x2e TALOAD see text in Ass 5 Ld from local
IASTORE | 0x4f TASTORE see text in Ass b St to local and pop
BIPUSH 0x10 BIPUSH imm PUSH res Byte immediate push
SIPUSH 0x17 SIPUSH imm1 imm2 | PUSH res Short immediate push
DUP 0x59 DUP Duplicate top of stack
DUP2 0xb¢ DUP2 Dupl. top 2 st. entries
POP 0x57 POP POP vl POP value, discard
IFEQ 0x99 IFEQ offset1 offset2 | POP vl Branch on vl == 0
IFNE 0x9a | IFNE offset1 offset2 | POP vl Branch on v1 =0
IFLT 0x9b IFLT offsetl offset2 POP vl Branch on vl <0
IFLE 0x9e IFLE offset1 offset2 POP vl Branch on vl <=0
IFGT 0x9d IFGT offset! offset2 | POP vl Branch on vl >0
IFGE 0x9c IFGE offset1 offset2 | POP vl Branch on vl >=0
GOTO OxaT7 GOTO offset! offset2 | none unconditional branch
IRETURN | Oxac IRETURN POP v1 Integer return

In assignment #5 you will simulate the JVM. The overall process will be:

1. Fetch the next bytecode

2. Decode it

=W

Fetch the operands

Execute the operation
5. Store the results
This week, you will start implementing the first two steps, i.e., your “only” task

is to take as input a sample string of bytecodes and “decode” that string, that
is write out the sequence of instructions that the string meant to execute.

For example, the string of bytecodes:
0x15, 0x12, 0x15, 0x06, 0x60, 0x59, 0x10, Oxal, 0x64, 0x36, 0x01
should result in:

ILOAD 18
ILOAD 6
IADD

DUP
BIPUSH -97
ISUB
ISTORE 1

You should write your code with the whole sequence of 5 steps above in mind,
i.e., your main program should call one or more subroutines, for example for
decoding (needed in this part of the assignment), for executing (not needed in
this part of the assignment) etc.

You should also have some registers dedicated to some functions of the JVM you
are simulating, for example one for the program counter of the JVM (needed in
this part of the assignment) one for the stack pointer for the JVM stack (not
needed in this part of the assignment and different of course of the $sp of the
SPIM machine) etc.

