CSE 378 Autumn 1999

Machine Organization and Assembly Language Programming
Problem Set / Programming Assignment #3
Due: Thursday, October 21

This assignment has two components: (1) Problems from the text relative to
the Performance of Computer Systems and (2) Two simple SPIM programs.

You should be familiar with the material covered in Chapters 2, 3, 4 (Sections
4.1 through 4.4) and Appendix A.

Part I

1. Problems 2.1, 2.2, 2.3, 2.4, 2.5.
2. Problems 2.10, 2.11, 2.12.
3. Problems 2.18, 2.20, 2.21, 2.22, 2.23.

4. Before doing the next exercises, be sure to read about Amdahl’s law (page
101). Problems 2.41, 2.42

Part 11

In this part of the assignment you’ll have to write some simple subroutines in
MIPS assembly language using SPIM to debug and test your programs.

Instructions on how to turnin your program as well as test input examples and
how to use them will be given to you in Sections.

Recall that it is imperative that your programs be commented. Programs
without comments might not be looked at, even if correct!

Problem 1. Write a procedure in MIPS assembly language that finds the
number of elements strictly greater than the last element and the number of
even elements in an array of integers (each element is a 32-bit positive, negative,
or null integer).

Your procedure will take two arguments: a pointer to the array of integers that
will be passed in register $a0 and the number of elements in the array that will
be passed in register $al. Your procedure will return the number of elements



strictly greater than the last element in $vo and the number of even elements
in $vl.

Please name your procedure problem1 so that it can be tested easily.

Problem 2. Write a procedure in MIPS assembly language that converts a
character string of ASCII digits into the integer value represented by the string.
The character string is null terminated and a pointer to it will be given as the
argument in register $a0. The ASCII representation of characters is in your
book page 142 (with the NULL character having the representation 0). Thus
the ASCII string “+24” is represented by the 4 bytes (where the value of each
byte is given in decimal notation) “43”, “50”7, “52”, “0”.

Your procedure named problem2 should return in register $v0 the value of the
positive, negative or zero representation of the string. If the string is valid, i.e.,
is a sign followed by a series of digits, or a series of digits, register $v1 should
contain 0. Otherwise, if the string is not valid (e.g., contains a letter, or a digit
followed by a sign, or is empty, or does not contain any digit etc.) the value
returned in $v0 is immaterial but register $v1 should contain a 1.



