
Lecture 13

Today’s lecture:
— What about load followed by use?
— What about branches?
— Crystal ball

1

2

What about loads?

Imagine if the first instruction in the example was LW instead of SUB.
— How does this change the data hazard?

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle
1 2 3 4 5 6

3

What about loads?

Imagine if the first instruction in the example was LW instead of SUB.
— The load data doesn’t come from memory until the end of cycle 4.
— But the AND needs that value at the beginning of the same cycle!

This is a “true” data hazard—the data is not available when we need it.

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle
1 2 3 4 5 6

4

Stalls and flushes

So far, we have discussed data hazards that can occur in pipelined CPUs if
some instructions depend upon others that are still executing.
— Many hazards can be resolved by forwarding data from the pipeline

registers, instead of waiting for the writeback stage.
— The pipeline continues running at full speed, with one instruction

beginning on every clock cycle.
Now, we’ll see some real limitations of pipelining.
— Forwarding may not work for data hazards from load instructions.
— Branches affect the instruction fetch for the next clock cycle.

In both of these cases we may need to slow down, or stall, the pipeline.

5

Stalling

The easiest solution is to stall the pipeline.
We could delay the AND instruction by introducing a one-cycle delay into
the pipeline, sometimes called a bubble.

Notice that we’re still using forwarding in cycle 5, to get data from the
MEM/WB pipeline register to the ALU.

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle
1 2 3 4 5 6 7

6

Stalling and forwarding

Without forwarding, we’d have to stall for two cycles to wait for the LW
instruction’s writeback stage.

In general, you can always stall to avoid hazards—but dependencies are
very common in real code, and stalling often can reduce performance by
a significant amount.

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

Clock cycle
1 2 3 4 5 6 7 8

7

Stalling delays the entire pipeline

If we delay the second instruction, we’ll have to delay the third one too.
— Why?

DMReg RegIM

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2

Clock cycle
1 2 3 4 5 6 7 8

8

Stalling delays the entire pipeline

If we delay the second instruction, we’ll have to delay the third one too.
— It prevents problems such as two instructions trying to write to the

same register in the same cycle.
— Also allows forwarding between AND and OR.

DMReg RegIM

DMReg RegIM

DMReg RegIM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2

Clock cycle
1 2 3 4 5 6 7 8

9

One way to implement a stall is to force the two instructions after LW to
pause and remain in their ID and IF stages for one extra cycle.

This is easily accomplished.
— Don’t update the PC, so the current IF stage is repeated.
— Don’t update the IF/ID register, so the ID stage is also repeated.

Reg

Implementing stalls

DMReg RegIM

RegIM

IM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2 DMReg RegIM

DM Reg

Clock cycle
1 2 3 4 5 6 7 8

10

But what about the ALU during cycle 4, the data memory in cycle 5, and
the register file write in cycle 6?

Those units aren’t used in those cycles because of the stall, so we can set
the EX, MEM and WB control signals to all 0s.

Reg

What about EXE, MEM, WB

DMReg RegIM

RegIM

IM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2 DMReg RegIM

DM Reg

Clock cycle
1 2 3 4 5 6 7 8

11

Stall = Nop conversion

The effect of a load stall is to insert an empty or nop instruction into the
pipeline

DMReg RegIM

RegIM

IM

lw $2, 20($3)

and -> nop

and $12, $2, $5

or $13, $12, $2
DMReg RegIM

DMReg Reg

Clock cycle
1 2 3 4 5 6 7 8

DM Reg

12

Detecting stalls

Detecting stall is much like detecting data hazards.

Recall the format of hazard detection equations:

if (EX/MEM.RegWrite = 1
and EX/MEM.RegisterRd = ID/EX.RegisterRs)

then Bypass Rs from EX/MEM stage latch

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

id
/e

x

if
/i

d

ex
/m

em

m
em

\w
b

id
/e

x

if
/i

d

ex
/m

em

m
em

\w
b

13

Detecting Stalls, cont.

When should stalls be detected?

Reg

DMReg RegIM

RegIM

lw $2, 20($3)

and $12, $2, $5 DM Reg

id
/e

x

if
/i

d

ex
/m

em

m
em

\w
b

id
/e

x

if
/i

d

ex
/m

em

m
em

\w
b

if
/i

d

What is the stall condition?

if (

)
then stall

14

Detecting stalls

We can detect a load hazard between the current instruction in its ID
stage and the previous instruction in the EX stage just like we detected
data hazards.
A hazard occurs if the previous instruction was LW...

ID/EX.MemRead = 1

...and the LW destination is one of the current source registers.

ID/EX.RegisterRt = IF/ID.RegisterRs
or

ID/EX.RegisterRt = IF/ID.RegisterRt

The complete test for stalling is the conjunction of these two conditions.

if (ID/EX.MemRead = 1 and
(ID/EX.RegisterRt = IF/ID.RegisterRs or
ID/EX.RegisterRt = IF/ID.RegisterRt))

then stall

15

Adding hazard detection to the CPU

0

1

Addr

Instruction
memory

Instr

Address

Write
data

Data
memory

Read
data 1

0

PC

Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control M

WB

WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Hazard
Unit

16

Adding hazard detection to the CPU

IF
/ID

 W
rit

e

Rs

0

1

Addr

Instruction
memory

Instr

Address

Write
data

Data
memory

Read
data 1

0

PC

Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control M

WB

WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Hazard
Unit

0

1

0

ID/EX.MemRead

P
C

 W
rit

e

Rt

ID/EX.RegisterRt

17

The hazard detection unit

The hazard detection unit’s inputs are as follows.
— IF/ID.RegisterRs and IF/ID.RegisterRt, the source registers for the

current instruction.
— ID/EX.MemRead and ID/EX.RegisterRt, to determine if the previous

instruction is LW and, if so, which register it will write to.
By inspecting these values, the detection unit generates three outputs.
— Two new control signals PCWrite and IF/ID Write, which determine

whether the pipeline stalls or continues.
— A mux select for a new multiplexer, which forces control signals for

the current EX and future MEM/WB stages to 0 in case of a stall.

18

Generalizing Forwarding/Stalling

What if data memory access was so slow, we wanted to pipeline it over 2
cycles?

How many bypass inputs would the muxes in EXE have?
Which instructions in the following require stalling and/or bypassing?

lw r13, 0(r11)
add r7, r8, r9
add r15, r7, r13

Clock cycle
1 2 3 4 5 6

DMRegIM Reg

19

Branches in the original pipelined datapath

Read
address

Instruction
memory

Instruction
[31-0] Address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

0

MemToReg

4

Shift
left 2

P
C

Add

1

0

PCSrc

Sign
extend

ALUSrc

Result

ZeroALU

ALUOp

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Add

Instr [15 - 11]

Instr [20 - 16]
0

1

0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control
M

WB

WB

When are they resolved?

20

Branches

Most of the work for a branch computation is done in the EX stage.
— The branch target address is computed.
— The source registers are compared by the ALU, and the Zero flag is set

or cleared accordingly.
Thus, the branch decision cannot be made until the end of the EX stage.
— But we need to know which instruction to fetch next, in order to keep

the pipeline running!
— This leads to what’s called a control hazard.

DMReg RegIMbeq $2, $3, Label

? ? ? IM

Clock cycle
1 2 3 4 5 6 7 8

21

Stalling is one solution

Again, stalling is always one possible solution.

Here we just stall until cycle 4, after we do make the branch decision.

DMReg RegIMbeq $2, $3, Label

? ? ? DMReg RegIM

Clock cycle
1 2 3 4 5 6 7 8

IM

22

Branch prediction

Another approach is to guess whether or not the branch is taken.
— In terms of hardware, it’s easier to assume the branch is not taken.
— This way we just increment the PC and continue execution, as for

normal instructions.
If we’re correct, then there is no problem and the pipeline keeps going at
full speed.

DMReg RegIMbeq $2, $3, Label

next instruction 1

next instruction 2

DMReg RegIM

Clock cycle
1 2 3 4 5 6 7

DMReg RegIM

23

Branch misprediction

If our guess is wrong, then we would have already started executing two
instructions incorrectly. We’ll have to discard, or flush, those instructions
and begin executing the right ones from the branch target address, Label.

DMReg RegIMbeq $2, $3, Label

next instruction 1

next instruction 2

Label: . . .

RegIM

Clock cycle
1 2 3 4 5 6 7 8

IM

DMReg RegIM

flush

flush

24

Performance gains and losses

Overall, branch prediction is worth it.
— Mispredicting a branch means that two clock cycles are wasted.
— But if our predictions are even just occasionally correct, then this is

preferable to stalling and wasting two cycles for every branch.
All modern CPUs use branch prediction.
— Accurate predictions are important for optimal performance.
— Most CPUs predict branches dynamically—statistics are kept at run-

time to determine the likelihood of a branch being taken.
The pipeline structure also has a big impact on branch prediction.
— A longer pipeline may require more instructions to be flushed for a

misprediction, resulting in more wasted time and lower performance.
— We must also be careful that instructions do not modify registers or

memory before they get flushed.

25

Implementing branches

We can actually decide the branch a little earlier, in ID instead of EX.
— Our sample instruction set has only a BEQ.
— We can add a small comparison circuit to the ID stage, after the

source registers are read.
Then we would only need to flush one instruction on a misprediction.

DMReg RegIMbeq $2, $3, Label

next instruction 1

Label: . . .

IM

Clock cycle
1 2 3 4 5 6 7

DMReg RegIM

flush

26

Implementing flushes

We must flush one instruction (in its IF stage) if the previous instruction is
BEQ and its two source registers are equal.
We can flush an instruction from the IF stage by replacing it in the IF/ID
pipeline register with a harmless nop instruction.
— MIPS uses sll $0, $0, 0 as the nop instruction.
— This happens to have a binary encoding of all 0s: 0000 0000.

Flushing introduces a bubble into the pipeline, which represents the one-
cycle delay in taking the branch.
The IF.Flush control signal shown on the next page implements this idea,
but no details are shown in the diagram.

27

Branching without forwarding and load stalls

0

1

Addr

Instruction
memory

Instr

Address

Write
data

Data
memory

Read
data 1

0
Extend

ALUSrc Result

Zero
ALU

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control
M

WB

WB

=

Add
Shift
left 2

4

P
C

1

0

PCSrc

IF.Flush

The other
stuff just
won’t fit!

28

Timing

If no prediction:

IF ID EX MEM WB
IF IF ID EX MEM WB --- lost 1 cycle

If prediction:
— If Correct

IF ID EX MEM WB
IF ID EX MEM WB -- no cycle lost

— If Misprediction:
IF ID EX MEM WB

IF0 IF1 ID EX MEM WB --- 1 cycle lost

29

Summary

Three kinds of hazards conspire to make pipelining difficult.
Structural hazards result from not having enough hardware available to
execute multiple instructions simultaneously.
— These are avoided by adding more functional units (e.g., more adders

or memories) or by redesigning the pipeline stages.
Data hazards can occur when instructions need to access registers that
haven’t been updated yet.
— Hazards from R-type instructions can be avoided with forwarding.
— Loads can result in a “true” hazard, which must stall the pipeline.

Control hazards arise when the CPU cannot determine which instruction
to fetch next.
— We can minimize delays by doing branch tests earlier in the pipeline.
— We can also take a chance and predict the branch direction, to make

the most of a bad situation.

