
1

Lecture 12

Today’s topics:
— More pipelining...

2

Pipeline diagram review

This diagram shows the execution of an ideal code fragment.
— Each instruction needs a total of five cycles for execution.
— One instruction begins on every clock cycle for the first five cycles.
— One instruction completes on each cycle from that time on.

Clock cycle
1 2 3 4 5 6 7 8 9

lw $8, 4($29) IF ID EX MEM WB

sub $2, $4, $5 IF ID EX MEM WB

and $9, $10, $11 IF ID EX MEM WB

or $16, $17, $18 IF ID EX MEM WB

add $13, $14, $0 IF ID EX MEM WB

3

Here is the example instruction sequence used to illustrate pipelining

lw $8, 4($29)
sub $2, $4, $5
and $9, $10, $11
or $16, $17, $18
add $13, $14, $0

The instructions in this example are independent.
— Each instruction reads and writes completely different registers.
— Our datapath handles this sequence easily, as we saw last time.

Is this the case for most sequences?

Our examples are too simple

4

An example with dependencies

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Is this a problem for the single-cycle datapath? Why?

How would this code sequence fare in our pipelined datapath?

5

Clock cycle
1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

The SUB instruction does not write to register $2 until clock cycle 5. This
causes two data hazards in our current pipelined datapath.
— The AND reads register $2 in cycle 3. Since SUB hasn’t modified the

register yet, this will be the old value of $2, not the new one.
— Similarly, the OR instruction uses register $2 in cycle 4, again before

it’s actually updated by SUB.

Data hazards in the pipeline diagram

6

Clock cycle
1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

The ADD instruction is okay, because of the register file design.
— Registers are written at the beginning of a clock cycle.
— The new value will be available by the end of that cycle.

The SW is no problem at all, since it reads $2 after the SUB finishes.

Things that are okay

7

Clock cycle
1 2 3 4 5 6 7 8 9

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add $14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

Arrows indicate the flow of data between instructions.
— The tails of the arrows show when register $2 is written.
— The heads of the arrows show when $2 is read.

Any arrow that points backwards in time represents a data hazard in our
basic pipelined datapath. Here, hazards exist between instructions 1 & 2
and 1 & 3.

Dependency arrows

8

A fancier pipeline diagram

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Clock cycle
1 2 3 4 5 6 7 8 9

9

A more detailed look at the pipeline

We have to eliminate the hazards, so the AND and OR instructions in our
example will use the correct value for register $2.
When is the data is actually produced and consumed?
What can we do?

Clock cycle
1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

10

A more detailed look at the pipeline

We have to eliminate the hazards, so the AND and OR instructions in our
example will use the correct value for register $2.
Let’s look at when the data is actually produced and consumed.
— The SUB instruction produces its result in its EX stage, during cycle 3

in the diagram below.
— The AND and OR need the new value of $2 in their EX stages, during

clock cycles 4-5 here.

Clock cycle
1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

11

Bypassing the register file

The actual result $1-$3 is computed in clock cycle 3, before it’s needed
in cycles 4 and 5.
If we could somehow bypass the writeback and register read stages when
needed, then we can eliminate these data hazards.
— Today we’ll focus on hazards involving arithmetic instructions.
— Next time, we’ll examine the lw instruction.

Essentially, we need to pass the ALU output from SUB directly to the AND
and OR instructions, without going through the register file.

Clock cycle
1 2 3 4 5 6 7

sub $2, $1, $3 IF ID EX MEM WB

and $12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

12

Where to find the ALU result

The ALU result generated in the EX stage is normally passed through the
pipeline registers to the MEM and WB stages, before it is finally written to
the register file.
This is an abridged diagram of our pipelined datapath.

Instruction
memory Data

memory

1

0

PC

ALURegisters

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

13

Forwarding

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle
1 2 3 4 5 6 7

Since the pipeline registers already contain the ALU result, we could just
forward that value to subsequent instructions, to prevent data hazards.
— In clock cycle 4, the AND instruction can get the value $1 - $3 from

the EX/MEM pipeline register used by sub.
— Then in cycle 5, the OR can get that same result from the MEM/WB

pipeline register being used by SUB.

14

Outline of forwarding hardware

A forwarding unit selects the correct ALU inputs for the EX stage.
— If there is no hazard, the ALU’s operands will come from the register

file, just like before.
— If there is a hazard, the operands will come from either the EX/MEM

or MEM/WB pipeline registers instead.
The ALU sources will be selected by two new multiplexers, with control
signals named ForwardA and ForwardB.

DMReg RegIM

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

15

Simplified datapath with forwarding muxes

ForwardAInstruction
memory

Data
memory

1

0

PC

ALURegisters

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

0
1
2

0
1
2

ForwardB

16

Detecting EX/MEM data hazards

So how can the hardware determine if a hazard exists?

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

17

Detecting EX/MEM data hazards

So how can the hardware determine if a hazard exists?
An EX/MEM hazard occurs between the instruction currently in its EX
stage and the previous instruction if:
1. The previous instruction will write to the register file, and
2. The destination is one of the ALU source registers in the EX stage.

There is an EX/MEM hazard between the two instructions below.

Data in a pipeline register can be referenced using a class-like syntax.
For example, ID/EX.RegisterRt refers to the rt field stored in the ID/EX
pipeline.

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

18

EX/MEM data hazard equations

The first ALU source comes from the pipeline register when necessary.

if (EX/MEM.RegWrite = 1
and EX/MEM.RegisterRd = ID/EX.RegisterRs)

then ForwardA = 2

The second ALU source is similar.

if (EX/MEM.RegWrite = 1
and EX/MEM.RegisterRd = ID/EX.RegisterRt)

then ForwardB = 2

DMReg RegIM

DMReg RegIM

sub $2, $1, $3

and $12, $2, $5

19

Detecting MEM/WB data hazards

A MEM/WB hazard may occur between an instruction in the EX stage and
the instruction from two cycles ago.
One new problem is if a register is updated twice in a row.

add $1, $2, $3
add $1, $1, $4
sub $5, $5, $1

Register $1 is written by both of the previous instructions, but only the
most recent result (from the second ADD) should be forwarded.

DMReg RegIM

DMReg RegIM

DMReg RegIM

add $1, $2, $3

add $1, $1, $4

sub $5, $5, $1

20

MEM/WB hazard equations

Here is an equation for detecting and handling MEM/WB hazards for the
first ALU source.

if (MEM/WB.RegWrite = 1
and MEM/WB.RegisterRd = ID/EX.RegisterRs
and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRs or EX/MEM.RegWrite = 0)

then ForwardA = 1

The second ALU operand is handled similarly.

if (MEM/WB.RegWrite = 1
and MEM/WB.RegisterRd = ID/EX.RegisterRt
and (EX/MEM.RegisterRd ≠ ID/EX.RegisterRt or EX/MEM.RegWrite = 0)

then ForwardB = 1

21

Simplified datapath with forwarding

ForwardA
Instruction

memory

Data
memory

1

0

PC

ALURegisters

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

ForwardB

ID/EX.
RegisterRt

ID/EX.
RegisterRs

22

The forwarding unit

The forwarding unit has several control signals as inputs.

ID/EX.RegisterRs EX/MEM.RegisterRd MEM/WB.RegisterRd
ID/EX.RegisterRt EX/MEM.RegWrite MEM/WB.RegWrite

(The two RegWrite signals are not shown in the diagram, but they come
from the control unit.)
The fowarding unit outputs are selectors for the ForwardA and ForwardB
multiplexers attached to the ALU. These outputs are generated from the
inputs using the equations on the previous pages.
Some new buses route data from pipeline registers to the new muxes.

23

Example

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Assume again each register initially contains its number plus 100.
— After the first instruction, $2 should contain -2 (101 - 103).
— The other instructions should all use -2 as one of their operands.

We’ll try to keep the example short.
— Assume no forwarding is needed except for register $2.
— We’ll skip the first two cycles, since they’re the same as before.

24

MEM/WB.RegisterRdID/EX.
RegisterRs

Clock cycle 3

Instruction
memory

Data
memory

1

0

PC

ALURegisters

12 (Rd)

5 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

2 (Rs)

0
1
2

0
1
2

Forwarding
Unit

1

EX: sub $2, $1, $3ID: and $12, $2, $5IF: or $13, $6, $2

102

105

X

X

2

5

101

103

101

-2

103

0

0

3

2 2

ID/EX.
RegisterRt

EX/MEM.RegisterRd

25

-2

ID/EX.
RegisterRs

5

MEM/WB.RegisterRd

EX/MEM.RegisterRd

Clock cycle 4: forwarding $2 from EX/MEM

Instruction
memory

Data
memory

1

0

PC

ALURegisters

13 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

6 (Rs)

0
1
2

0
1
2

Forwarding
Unit

2

EX: and $12, $2, $5ID: or $13, $6, $2IF: add $14, $2, $2

106

102

X

X

6

2

102

105

-2

104

105

0

2

12 12

MEM: sub $2, $1, $3

-2

2

ID/EX.
RegisterRt

26

-2

ID/EX.
RegisterRs

2EX/MEM.RegisterRd

Clock cycle 5: forwarding $2 from MEM/WB

Instruction
memory

Data
memory

1

0

PC

ALURegisters

14 (Rd)

2 (Rt)
0

1

IF/ID ID/EX EX/MEM MEM/WB

2 (Rs)

0
1
2

0
1
2

Forwarding
Unit

12

6

EX: or $13, $6, $2ID: add $14, $2, $2IF: sw $15, 100($2)

-2

-2

-2

2

2

2

106
106

-2

102

1

0

13 13

MEM: and $12, $2, $5

104

104

WB: sub
$2, $1, $3

X

-2

-2

-2

2

2

ID/EX.
RegisterRt

MEM/WB.RegisterRd

27

Lots of data hazards

The first data hazard occurs during cycle 4.
— The forwarding unit notices that the ALU’s first source register for the

AND is also the destination of the SUB instruction.
— The correct value is forwarded from the EX/MEM register, overriding

the incorrect old value still in the register file.
A second hazard occurs during clock cycle 5.
— The ALU’s second source (for OR) is the SUB destination again.
— This time, the value has to be forwarded from the MEM/WB pipeline

register instead.
There are no other hazards involving the SUB instruction.
— During cycle 5, SUB writes its result back into register $2.
— The ADD instruction can read this new value from the register file in

the same cycle.

28

Complete pipelined datapath...so far

0

1

Addr

Instruction
memory

Instr

Address

Write
data

Data
memory

Read
data 1

0

PC

Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID

ID/EX

EX/MEM

MEM/WB

EX

M

WB

Control
M

WB

WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

29

What about stores?

Two “easy” cases:

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw $1, 0($4)

DMReg RegIM

DMReg RegIM

add $1, $2, $3

sw $4, 0($1)

1 2 3 4 5 6

1 2 3 4 5 6

30

Store Bypassing: Version 1

0

1

Addr

Instruction
memory

Instr

Address

Write
data

Data
memory

Read
data 1

0

PC

Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

EX: sw $4, 0($1) MEM: add $1, $2, $3

31

Store Bypassing: Version 2

0

1

Addr

Instruction
memory

Instr

Address

Write
data

Data
memory

Read
data 1

0

PC

Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

EX: sw $1, 0($4) MEM: add $1, $2, $3

32

What about stores?

A harder case:

In what cycle is:
— The load value available?
— The store value needed?

What do we have to add to the datapath?

DMReg RegIM

DMReg RegIM

lw $1, 0($2)

sw $1, 0($4)

1 2 3 4 5 6

33

Load/Store Bypassing: Extend the Datapath

0

1

Addr

Instruction
memory

Instr

Address

Write
data

Data
memory

Read
data 1

0

PC

Extend

ALUSrc Result

Zero
ALU

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

Rd

Rt
0

1

IF/ID ID/EX EX/MEM MEM/WB

Rs

0
1
2

0
1
2

Forwarding
Unit

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Sequence :
lw $1, 0($2)
sw $1, 0($4)

ForwardC

0

1

34

Miscellaneous comments

Each MIPS instruction writes to at most one register.
— This makes the forwarding hardware easier to design, since there is

only one destination register that ever needs to be forwarded.
Forwarding is especially important with deep pipelines like the ones in all
current PC processors.
Section 4.7 of the textbook has some additional material not shown here.
— Their hazard detection equations also ensure that the source register

is not $0, which can never be modified.
— There is a more complex example of forwarding, with several cases

covered. Take a look at it!

35

Summary

In real code, most instructions are dependent upon other ones.
— This can lead to data hazards in our original pipelined datapath.
— Instructions can’t write back to the register file soon enough for the

next two instructions to read.
Forwarding eliminates data hazards involving arithmetic instructions.
— The forwarding unit detects hazards by comparing the destination

registers of previous instructions to the source registers of the current
instruction.

— Hazards are avoided by grabbing results from the pipeline registers
before they are written back to the register file.

Next, we’ll finish up pipelining.
— Forwarding can’t save us in some cases involving lw.
— We still haven’t talked about branches for the pipelined datapath.

