
Name: 1

Machine Organization & Assembly Language
CSE 378 Fall 2010 Final Exam

Write your answers on these pages. Additional pages may be attached (with staple) if necessary. Please ensure that
your answers are legible. Please show your work. Write your name at the top of each page.

Total points: 100

1. [15 Points] x86 Programming
Write the 64-bit x86 code for the following function, following all standard x64 calling conventions:

int my_func(unsigned char *input_array) {
int output = 0;
while (*input_array) {

if (*input_array < 127)
output += *input_array;

++input_array;
}
return output;

}

2

2. [15 Points] MIPS Programming
Write the MIPS code for the following function, following all standard MIPS32 calling conventions:

int fib(int x) {
if (x <= 1)

return 1;
return fib(x-1) + fib(x-2);

}

Name: 3

3. [15 points] Datapath
As you may recall, in x86 the load effective address instruction computes and stores an effective memory address
in a register. For example, “leal (%eax, %edx, 4), %eax” assigns the value of %eax + %edx * 4
to the eax register. Suppose we want to add a similar instruction to the 5-stage pipelined MIPS processor you
implemented in lab. The syntax of this new I-format instruction is lea rs, rt, scale and it stores the
value of R[rt] * scale + R[rs] into R[rt].

(a) The diagram below is a simple version of the 5-stage pipelined MIPS processor from class. The controller
has a new output wire named LEA, which is high when the controller decodes an lea instruction and low
otherwise. Add the necessary logic to support this new instruction to the datapath below.

(b) Complete the following table of control signals for the newly-supported lea instruction, specifying the
value of each signal as 0, 1, or X (don’t care). Add columns for any control signals your added logic
requires. Writing a 0 or 1 when an X is more accurate is not correct.

Opcode LEA RegWrite RegDst ALUSrc ALUOp MemWrite MemRead MemToReg PCSrc
lea 1

4

4. [15 points] Pipelining
Imagine a pipelined processor with the following pipe stages:
Fetch1→ Fetch2→ Decode/Reg→ Execute→Memory1→Memory2→Writeback

That is, accessing memory (for both instructions and data) requires two pipeline stages. Because of the in-
creased delay in fetching instructions, this machine has 2 branch delay slots. Further, there is no partial result
forwarding (e.g., there exist no forwarding paths from Mem1→ EX).

Fill in the following pipeline stage diagram for this processor when it executes the following code:

LOOP:
LW $4, 0($5)
BEQ $4, $4, LOOP
ADDI $5, $5, 8
SUBI $5, $5, -4

Cycle Fetch1 Fetch2 Decode/Reg Ex Mem1 Mem2 WB

0

1

2

3

4

5

6

7

8

9

10

11

12

Name: 5

5. [15 Points] Caching
Suppose your processor has a data cache of the following geometry:

• Total data size of 128 B

• Cache block size of 16 B

• 2-way set associativity with LRU replacement

• Writeback coherence policy

• Allocate-on-write for store misses

Hit returns in 1 cycle Miss penalty 4 cycles

Assuming a miss penalty of 4 cycles and that a cache hit returns in 1 cycle, what would be the hit rate, miss rate,
number of writebacks, and average memory access time (in cycles) for the following address stream?

L 0x00000001
S 0x00000002
L 0x00000010
L 0x00000011
L 0x00000001
L 0x00000200
L 0x00000300
L 0x00000400
S 0x00000201
L 0x00000401
L 0x00000301

Hit Rate

Miss Rate

Writebacks

AMAT

6

6. [10 Points] Caching in the Real World
Imagine you’re building an iPhone application for processing images. As part of your application you need to
extend the standard math functions described in math.h to compute the average value of a matrix of normalized
pixel values. As a smart programmer, you wish to avoid ”reinventing the wheel” so you query Google for
implementations. Your search returns two promising results, both conveniently implemented as functions in the
C programming language.

Result A:

double average_matrix_by_row(double* data[], int numRows, int numCols) {
double sum = 0.0;
int r, c;
for(r = 0; r < numRows; r++) {

for(c = 0; c < numCols; c++) {
sum += data[r][c];

}
}
return sum / ((double) numRows * numCols);

}

Result B:

double average_matrix_by_col(double* data[], int numRows, int numCols) {
double sum = 0.0;
int c, r;
for(c = 0; c < numCols; c++) {

for(r = 0; r < numRows; r++) {
sum += data[r][c];

}
}
return sum / ((double) numRows * numCols);

}

Considering that the iPhone 4’s A4 processor has a 32 KB, 4-way set associative cache with 16-word (64 B)
blocks, which implementation would you choose for your program? You may assume that all local variables
(e.g. sum, r, c) are kept in registers in the compiled version of the code. Justify your choice with quantitative
reasons.

Name: 7

7. [15 Points] True / False
Circle True or False for each of the following questions.

(a) True / False : Paging is the only way to provide protection between processes on x86 processors

(b) True / False : In x64 all arguments to functions are passed via the stack

(c) True / False : MIPS is an accumulator based architecture

(d) True / False : Programs always run faster on systems that have caches

(e) True / False : Adding a pipeline stage to a processor can decrease performance

(f) True / False : Memory mapped I/O devices can use memory that is cached by the main processor

(g) True / False : When the x86 processor receives an external interrupt while in user mode, the processor
vectors to the given user mode interrupt handler

(h) True / False : I enjoyed this class

8. [1 Point] Extra Credit
Steven (the TA) shares his initials with the opcode for what MIPS32 instruction?

8

This page intentionally left blank for extra answer space, scratch work, caricatures of the course staff, doodles of your
winter break plans or anything else you desire which fits here.

Name: 9

10

