
Name: 1

Machine Organization & Assembly Language
CSE 378 Autumn 2007 Final Exam

Write your answers on these pages. Additional pages may be attached (with staple) if necessary. Please ensure that
your answers are legible. Please show your work. Write your name at the top of each page.

Problem Points

1 / 20

2 / 10

3 / 15

4 / 5

5 / 5

6 / 10

7 / 10

8 / 15

9 / 10

TOTAL / 100

2

1. [20 points] MIPS Assembly Programming
Write two assembly functions: ROT7 that takes a null-terminated string of ASCII characters pointed at by
$a0 and rotates each character by 7 in place and UNROT7, which also takes a null-terminated string of ASCII
characters pointed at by $a0 and unrotates each character by 7 in place. You must implement the body of LOOP
in the template below.

Here are some example inputs and outputs:

The string
ABCDEFGH becomes
HIJKLMNO when ROT7 is applied to it.

And the string
ABCDEFGH becomes
TUVWXYZA when UNROT7 is applied to it.

You may assume that the strings passed to your functions will contain only UPPER CASE LETTERS.

ROT7:
addi $s0, $0, 7 #Set arg for leaf function
j ROT #Jump to leaf function

UNROT7:
addi $s0, $0, 19 #Set arg for leaf function
j ROT #Jump to leaf function

ROT:
addi $s2, $0, 26

LOOP:
constants you may find useful
addi $v0, $0, 65 # ASCII character code for ’A’
addi $v1, $0, 90 # ASCII character code for ’Z’

DONE:
jr $ra #Return

Name: 3

2. [10 points] Pointers.

int areEqual(char a, char b, char c, char d) {
if (a == b && b == c && c == d)

return 1;
else

return 0;
}

...
// call site
char a, b, c, d;
int result = areEqual(a, b, c, d);
...

Lynn Ucks Hacker, C programmer extraordinaire, heard from a friend that using pointers to pass arguments
during a function call (i.e., pass-by-reference) is faster than passing the value itself. Ms. Hacker is considering
rewriting the above function areEqual, which is called very frequently in her program, to use pointers instead
of passing char’s directly.

(a) Rewrite the code above to implement this new pointer-based interface for areEqual. Be sure to change
the function as well as its call site.

(b) Assuming that this code runs on a 32-bit architecture, is this a good idea? Why or why not?

4

3. [15 points] Performance

Instruction Type CPI

load/store 2

ALU 1

branch 1.5

Application IPC % Loads/Stores % ALU ops % Branches

A .8

B .667

(a) Given the IPC for each application A and B, and the CPI costs for each instruction type (in the tables above),
give a percentage breakdown for each of the instruction types that constitute that application (Note: there
are multiple correct answers). Ensure that your percentages sum to 100% for each application. Hint:
CPI = 1

IPC .

(b) Supposing that the cost of ALU operations is now completely free (i.e., CPI = 0 for ALU ops), what is the
speedup for each application? Feel free to leave your answers as fractions.

Name: 5

4. [5 points] Interrupts
Why is it a good idea to use interrupts, instead of polling, for disk-based I/O?

5. [5 points] Compiler Optimization
Why might a compiler perform the following optimization?

// code before...
for (j = 0; j < 20; j++)

for (i = 0; i < 200; i++)
x[i][j] = x[i][j] + 1;

// ...code after
for (i = 0; i < 200; i++)

for (j = 0; j < 20; j++)
x[i][j] = x[i][j] + 1;

6

6. [10 points] I/O

I/O bus

Hard disks CD­ROM Network Display

Processor­memory bus

MemoryCPU

(a) Explain why the buses in the figure above are split into a hierarchy.

(b) In modern PC’s the display device interface is also on the Processor-Memory bus. Why is this?

(c) A CPU and memory share a 32-bit bus running at 200MHz. The memory needs 55ns to access a 128-bit
value from one address. What is the effective bandwidth?

Name: 7

7. [10 points] Caching
The following C Program is run (with no optimization) on a processor with a cache that has 8-word (32-byte)
blocks, and the cache holds a total of 256 bytes of data. A C int is 1 word in size. You must give your answers
as fractions, but you can leave them unreduced.

int i, j, c, stepsize, array[512];

for (i = 0 ; i < 100 ; i++) {
for (j = 0 ; j < 512 ; j=j + stepsize) {

c += array [j] + 17;
}

}

(a) If we consider only the cache activity generated by references to the array, what is the miss rate when the
cache is direct mapped and stepsize = 256?

(b) Again considering only the cache activity generated by references to the array, what is the miss rate when
the cache is direct mapped but we change stepsize to 255?

(c) Again considering only the cache activity generated by references to the array, what is the miss rate when
the cache is two-way set associative and stepsize = 256?

8

8. [15 points] Mystery Cache
Given the following sequence of memory requests and their responses from a mystery cache M, give a possible
block size (in bytes), associativity, and total size (in bytes) for M. All addresses are byte addresses.

Address Outcome
0 miss
1 hit
2 miss
3 hit
4 miss
2 hit
0 miss

9. [10 points] Virtual Memory
Assume a hierarchical page table of two levels. Pages in this system are 4KB in size, and page table entries are
4B each. Assume there is exactly one 2nd-level page table P in the system, and P occupies exactly one page
of physical memory. If exactly half of P’s entries are valid, how many bytes of memory in our virtual address
space actually reside in the physical memory? Do not include the space occupied by the page tables themselves
in your answer.

