
 CSE 378 Midterm Sample Solution 2/11/11

 Page 1 of 9

Question 1. (9 points). Suppose we have the following MIPS instructions stored in
memory starting at location 0x2400.

 2400: add $v0,$t1,$t3
 2404: loop: sll $t3,$a2,12
 2408: or $s2,$t3,$a1
 240c: bne $s2,$t8,loop
 2410: addi $s5,$zero,17

(a) (3 points) Re-write the bne instruction at location 240c replacing the register names
and branch label (loop) with the actual register numbers and an integer branch offset.

 bne $18, $24, -3

(b) (1 point) What is the format of the bne instruction (R, I, or J)?

 I

(c) (5 points) Re-write the bne instruction in binary. Your answer should diagram the
fields of the instruction and show the bits in each field. Label the fields of the instruction
(opcode, etc.).

 000101 10010 11000 1111111111111101
 opcode rs rt imm

 CSE 378 Midterm Sample Solution 2/11/11

 Page 2 of 9

Question 2. (12 points) For each of the following instructions, (i) indicate whether it is
a real MIPS machine instruction or an assembler pseudo-instruction, and (ii) if it is a
pseudo-instruction, write the corresponding machine instruction or instructions that
would be generated by an assembler to perform the given operation. You can still use
symbolic register names like $a5, $t2, etc., in your re-written instructions; you do not
need to translate those to the actual register numbers. If the original instruction is a real
machine instruction you do not need to write anything under (ii).

(a) li $v0, 0xdeadbeef (i) Instruction type: real pseudo

(ii) Rewritten machine instruction(s) if original code is a pseudo-instruction:

 lui $v0, 0xdead
 ori $v0, $v0, 0xbeef

Note: addi could not be used instead of ori here because when 0xbeef is sign-
extended to a 32-bit number it becomes 0xffffbeef and the resulting sum would
be 0xdeacbeef. addi could be used if the operand of the lui instruction was
0xdeae and the second instruction was addi with an operand of 0xbeef.

(b) bge $s5, $a0, somewhere (i) Instruction type: real pseudo

(ii) Rewritten machine instruction(s) if original code is a pseudo-instruction:

 slt $at, $s5, $a0 # at=0 if $s5>=$a0
 beq $at, $zero, somewhere

Note: $at is the only register that can be used to hold the result of slt. Other
registers cannot be used unless the assembler knows that the value in the chosen
register is not needed later, and there is no way it can know that.

(c) addi $sp, $s3, -17 (i) Instruction type: real pseudo

(ii) Rewritten machine instruction(s) if original code is a pseudo-instruction:

 CSE 378 Midterm Sample Solution 2/11/11

 Page 3 of 9

Question 3. (25 points) MIPS Hacking. If we have a sorted list of integers, one
operation we might want to perform is to insert a new value into the proper place in the
list. Here is a function to do that.

 /* Insert val in the correct place in sorted int array A. */
 /* Preconditions: There are n elements currently stored in */
 /* A[0]..A[n-1], and n >= 0. The array is sorted in non- */
 /* decreasing order, A[0] <= A[1] <= ... <= A[n-1]. */
 /* The array size is at least n+1, so there is room for a */
 /* new value. */
 void insert(int A[], int n, int val) {
 int k = n;
 while (k > 0 && A[k-1] > val) {
 A[k] = A[k-1];
 k--;
 }
 A[k] = val;
 }

Translate this function into MIPS assembly language. You should use the standard MIPS
calling and register conventions. You do not need to allocate a stack frame if you do not
need one. You must implement this algorithm as given, but you may use either explicit
subscripting operations or pointers or both to reference array elements, whichever is more
convenient. Feel free to use assembler pseudo-instructions in your solution.

Hint: Even though there are four references to array elements in the code, you probably
don’t need to include lots of duplicate code to recalculate each of the array element
locations from scratch, one at a time.

Reminder: Remember that when evaluating k>0&&A[k-1]>val, the second part of the
condition is not evaluated if the first part (k>0) is false.

Include brief comments to make it easier to follow your code.

Write

 your

 answer

 on the

 next

 page.

(You can tear this page out for reference while you work, if that is helpful.)

 CSE 378 Midterm Sample Solution 2/11/11

 Page 4 of 9

Question 3. (cont.) Write your MIPS version here. C code repeated for reference.

 void insert(int A[], int n, int val) {
 int k = n;
 while (k > 0 && A[k-1] > val) {
 A[k] = A[k-1];
 k--;
 }
 A[k] = val;
 }

insert: # register assignments:
 # $a0 = &A[0] (input arguments)
 # $a1 = n
 # $a2 = val
 # $t0 = k (temporaries)
 # $t1 = &A[k]
 # $t2 = A[k-1]

 move $t0,$a1 # k = n

 sll $t1,$t0,2 # $t1 = k*4

 add $t1,$t1,$a0 # $t1 = &A[k]

loop:

 ble $t0,$zero,done # exit if k<=0

 lw $t2,-4($t1) # load A[k-1]

 ble $t2,$a2,done # exit if A[k-1]<=val

 sw $t2,0($t1) # A[k] = A[k-1]

 addi $t0,$t0,-1 # decrement k

 addi $t1,$t1,-4 # adjust &A[k] to match

 j loop # repeat

done:

 sw $a2,0($t1) # A[k] = val

 jr $ra # return

Notes: This is a leaf function that does not call other functions and there are enough
temporary registers available for the code, so there is no need to allocate a stack
frame or save/restore registers.

Obviously there are many ways to write the code. This solution is a straight-
forward translation of the original C code.

 CSE 378 Midterm Sample Solution 2/11/11

 Page 5 of 9

Question 4. (22 points) Suppose we want to add support for a new set of branch instructions to
our single‐cycle MIPS data path. These instructions branch depending on the value of a word in
memory and a register, rather than a pair of registers. The new instructions are MBEQ, MBNE,
MBLEZ, and MBGTZ and they work like their register counterparts. For example:

“MBEQ $rs, $rt, some_label” will branch to some_label if M[R[$rs]] = $rt.
“MBLEZ $rs, $zero, some_label” will branch to some_label if M[R[$rs]] <= 0

(a) Below is skeleton code from the PCAddressComputer.v module from your Lab processor.
Add support for the four new branches (MBEQ, MBNE, MBLEZ, and MBGTZ) to the Verilog. For
simplicity, assume they have the same values of Inst[27:26] as regular branches.

module PCAddressComputer(
 input [31:0] PCIn, // Address of Next Instruction (PC + 4)
 input [31:0] Inst, // Instruction
 input [31:0] RS, // value of register specified by RS field of Inst
 input zero, // set if ALUOut == 0
 input Jump, // set if Inst indicates a jump operation
 input JR, // set if Inst is JR or JALR
 input Branch, // set if Inst is BEQ,BNE,BLEZ,BGTZ
 input MBranch, // set if Inst is MBEQ, MBNE, MBLEZ, MBGTZ
 input [31:0] M_RS, // value read from memory for MBranch
 input M_zero,
 output reg [31:0] PCOut

 // Relevant opcodes
 parameter BEQ = 2'b00; // Branch if Equal
 parameter BGTZ = 2'b11; // Branch if Greater Than Zero
 parameter BLEZ = 2'b10; // Branch if Less than or Equal to Zero
 parameter BNE = 2'b01; // Branch if Not Equal

 wire [31:0] BranchAddress = {{14{Inst[15]}}, Inst[15:0], 2'b0}; // target for a branch
 wire [31:0] JumpAddress = {PCIn[31:28], Inst[25:0], 2'b0}; // target for a jump

 always @ (*) begin
 PCOut = PCIn; // non-jump, non-branch default
 if (Jump)
 PCOut = (JR) ? RS : JumpAddress;
 else if (Branch) begin
 case (Inst[27:26])
 BEQ : PCOut = (zero) ? PCIn + BranchAddress : PCIn;
 BGTZ: PCOut = (!RS[31] && !zero) ? PCIn + BranchAddress: PCIn;
 BLEZ: PCOut = (RS[31] || zero) ? PCIn + BranchAddress : PCIn;
 BNE : PCOut = (!zero) ? PCIn + BranchAddress : PCIn;
 default: PCOut = 32'bX;
 endcase
 end
 else if (MBranch) begin /* Your code goes below here */
 case (Inst[27:26])
 BEQ : PCOut = (M_zero) ? PCIn + BranchAddress : PCIn;
 BGTZ: PCOut = (!M_RS[31] && !M_zero) ? PCIn + BranchAddress: PCIn;
 BLEZ: PCOut = (M_RS[31] || M_zero) ? PCIn + BranchAddress : PCIn;
 BNE : PCOut = (!M_zero) ? PCIn + BranchAddress : PCIn;
 default: PCOut = 32'bX;
 endcase
 end
 end
endmodule

 CSE 378 Midterm Sample Solution 2/11/11

 Page 6 of 9

Question 4 (cont.) (b) Now add the modified PCAddressComputer to the single cycle datapath.
A modified version of this datapath is shown below, including the new PCAddressComputer.
Wire‐up the two new inputs to the PCAddressComputer to support the four Memory Branch
instructions. You are free to add additional functional units (e.g. ALUs, muxes, etc.) to the
datapath to implement the new instructions.

 CSE 378 Midterm Sample Solution 2/11/11

 Page 7 of 9

Question 5. (18 points) Pipeline hazards. Consider this sequence of MIPS instructions.

a) lw $t1, 40($t2)

b) add $t2, $t3, $a0

c) add $t1, $t1, $t2

d) sw $t1, 20($t2)

(a) (6 points) Identify all of the data dependencies in the above instructions, whether or
not they cause any hazards or stalls. You can either draw arrows in the instructions or
describe the dependencies below. The instructions are labeled (a)-(d), which might be
useful in identifying them in your answer.

(a) generates value in $t1 used in (c)
(b) generates value in $t2 used in (c) and (d)
(c) generates new value in $t1 used in (d)

(b) (4 points) Suppose we execute these instructions on a processor with a 5-stage
pipeline with forwarding as described in class. Are there any hazards in the above
sequence of instructions that will require the pipeline to stall because they can’t be
handled by the forwarding mechanisms? If so, where are they and why is the stall
needed?

No stalls needed. If forwarding is available, the only possible need for a stall is if the
result of the lw instruction is needed before it is available in the pipeline datapath.
However, when these instructions are executed, the lw result is available at the end
of cycle 4 (the lw mem stage). The add instruction (c) needs that value at the
beginning of cycle 5 so it is available and no stall is required.

(continued next page)

 CSE 378 Midterm Sample Solution 2/11/11

 Page 8 of 9

Question 5. Pipeline hazards (cont). Instruction sequence repeated for reference.

a) lw $t1, 40($t2)

b) add $t2, $t3, $a0

c) add $t1, $t1, $t2

d) sw $t1, 20($t2)

(c) (8 points) Now let’s assume we’re executing these instructions on a new, prototype
processor, also with our usual 5-stage pipeline. Unfortunately in this new processor the
hazard circuitry is completely broken and it does not detect hazards or properly forward
results or insert stalls when necessary. We need to modify the code and insert nop
instructions to delay the execution of later instructions when necessary. Re-write the
above code and insert the minimum number of nop instructions needed to avoid hazards
that would otherwise require forwarding or stalls to produce the correct results. You may
not reorder the original instructions – just insert nops where they are needed. (To insert
a nop, just write nop on a line by itself. The assembler will know how to translate that
into a machine instruction that does nothing except delay for a cycle.)

If no forwarding or stalls are available, we must insert nops to ensure that values
are written on or before the decode cycle of any instruction that reads them. In this
case we need to inert nops before instructions (c) and (d) to wait 2 cycles each for
the previous instructions to write their results. With these delays, lw instruction (a)
has already written its result in $t1 before it is needed by add instruction (c).

a) lw $t1, 40($t2)
b) add $t2, $t3, $a0
 nop
 nop
c) add $t1, $t1, $t2
 nop
 nop
d) sw $t1, 20($t2)

 CSE 378 Midterm Sample Solution 2/11/11

 Page 9 of 9

Quesiton 6. (14 points) Pipeline performance. Suppose we have the following
functional units with the given latencies in a processor:

IF 2 ns
ID 2 ns
EX 3 ns

MEM 6 ns
WB 2 ns

(a) If we use these units to build a single-cycle implementation, how long does it take to
execute a single instruction?

 15 ns

(b) If we use these units to build our usual 5-stage pipeline processor, what is the shortest
possible cycle time?

 6 ns (time needed by longest stage)

(c) How long does it take to execute N instructions using this pipeline, where N is some
arbitrary large number?

 6*(4+N) ns (4 cycles to fill the pipeline, then 1 cycle for each result)

(d) What is the speedup of this pipelined processor over the single-cycle implementation?

 Ignoring the fill delay, 15/6 = 2.5x

(e) How does the speedup calculated in part (d) compare with the maximum speedup we
could get from a 5-stage pipeline implementation? If it is not as good as it might be,
explain what the problem is and suggest what might be done to improve it.

The maximum speed up of a 5-stage pipeline is 5x, so we are only doing half as well
as we might.

The trouble is that the MEM stage takes twice as long as any other stage, which
limits the speed at which the pipeline stages can execute. One reasonable fix would
be to split the MEM stage into two cycles, MEM1 and MEM2, taking 3ns each.
Then we could have a 6-stage pipeline with a 3ns cycle time. That could execute N
instructions in 3*(5+N) cycles, for a speedup of 15/3 = 5x over the single-cycle
implementation.

