
 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 1 of 11

Name _______________________________________

There are 8 questions worth a total of 100 points. Please budget your time so you get to
all of the questions – don’t miss the short questions at the end. Keep your answers brief
and to the point.

Copies of the MIPS reference card (“green card”) have been handed out separately and
you can refer to that. Otherwise the exam is closed book, closed notes, closed neighbors,
closed electronics, closed telepathy, etc., but open mind… You won’t need a calculator
either, so please keep that stowed in the overhead compartment or under the seat in front
of you – or whatever is equivalent in this room.

Please wait to turn the page until everyone is told to begin.

Score __________

1 _______ / 18

2 _______ / 8

3 _______ / 10

4 _______ / 10

5 _______ / 18

6 _______ / 14

7 _______ / 12

8 _______ / 10

Some powers of 2 (in case you need them)

n 2n
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1 024
11 2 048
12 4 096
13 8 192
14 16 384
15 32 768
16 65 536
20 1 048 576
24 16 777 216
30 1 073 741 824
31 2 147 483 648
32 4 294 967 296

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 2 of 11

Question 1. (18 points) To warm up, write a MIPS assembly language function that is
equivalent to the following C function that computes the sum of the sequence of numbers
x + (x+1) + … + y:

 int sum(int x, int y) {
 if (x > y)
 return 0;
 else
 return (x + sum(x+1,y));
 }

You should follow the standard MIPS conventions for register usage, function calls, and
stack frames. Your assembly language code must be equivalent to the given code – you
cannot rearrange the computation to calculate the result differently (for example, you
cannot replace the recursive function calls with a loop). You may use regular MIPS
assembly language pseudo-instructions in your code if you wish.

 # $a0 = x, $a1 = y
 sum:
 ble $a0,$a1,general # jump if x <= y
 li $v0,0 # return 0 since x > y
 jr $ra

 # general case: recursive call
 general:
 addi $sp,$sp,-8 # allocate stack frame
 sw $ra,0($sp) # save return address, x
 sw $a0,4($sp)
 addi $a0,$a0,1 # call sum(x+1,y)
 jal sum # recursive result in $v0
 lw $t0,4($sp) # reload x
 add $v0,$v0,$t0 # add x to recursive call
 lw $ra,0($sp) # restore return address
 addi $sp,$sp,8 # deallocate stack frame
 jr $ra # return

As usual there are many possible solutions. In particular, most MIPS C compilers
would use addiu and addu for addition, but either was acceptable for this
problem.

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 3 of 11

Question 2. (8 points) We have a C program that does extensive matrix manipulation
and we’re trying to improve the execution speed of the code. One part of the code
contains the following nested loop to transpose a N*N matrix:

 for (j = 0; j < N; j++) {
 for (i = 0; i < j; i++) {
 temp = a[i][j];
 a[i][j] = a[j][i];
 a[j][i] = temp;
 }
 }

This code is heavily used, so one of the summer interns who has recently taken CSE 378
suggests that it would run faster if it were written this way instead:

 for (i = 0; i < N; i++) {
 for (j = 0; j < i; j++) {
 temp = a[i][j];
 a[i][j] = a[j][i];
 a[j][i] = temp;
 }
 }

The intern claims that this will make better use of the cache and run faster. Is this
correct? Give a brief technical justification for your answer. In particular, what effect
will this change have on cache miss (or hit) rates, if any?

You should assume that the variables i, j, N, and temp are stored in registers and not in
memory, and that instruction fetches do not interfere with the data cache(s). Also,
remember that two-dimensional C arrays are stored in memory in row-major order, with
row 0 appearing first, followed by row 1, then row 2, etc.

The change won’t make any significant difference in the cache miss rates. In this
particular problem, the inner loop simultaneously references the array in both row-
major and column-major order. The memory reference pattern of the nested loops
will be the same in either case.

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 4 of 11

Question 3. (10 points) The following MIPS code could be used to increment the value
of two integer variables (similar to “i++; j++” in Java).

(a) li $t0,1 # load 1 into $t0
(b) lw $t1,100($t5) # load first variable
(c) add $t1,$t0,$t1 # increment
(d) sw $t1,100($t5) # store
(e) lw $t2,104($t5) # load 2nd variable
(f) add $t2,$t0,$t2 # increment
(g) sw $t2,104($t5) # store

(a) Suppose these instructions are executed on a 5-stage pipelined MIPS processor with
the usual hazard detection and forwarding implemented. Do any hardware stall cycles
(pipeline bubbles) need to be inserted by the processor to avoid incorrect results during
execution? If so, how many and where are they needed? (i.e., n cycles inserted between
(x) and (y).)

The processor needs to stall for a cycle between (b) and (c) and again between (e)
and (f). In both of these cases the result of a load is needed as an input value for the
next instruction, and even with forwarding, the value is not available from the
memory unit in time to forward it back to the execution cycle without waiting.

(b) Without changing what the code does, can the instructions be rearranged to reduce the
number of stalls needed if there are any? If so, describe the rearrangement and explain
how many stall cycles (if any) are needed in your revised code.

Any rearrangement that pushes the load instructions early so their values are not
needed on the very next instruction will eliminate the need for any stalls. An easy
way to do this is to order the instructions (b) (e), (a), (c), (d), (f), (g).

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 5 of 11

Question 4. (10 points) Suppose we have a processor that has the following CPI figures
for different kinds of instructions:

Kind CPI
memory 4
ALU 1
cond. branch 2
jump 1

Our customers mainly execute two types of operating systems that have the following
mix of instructions:

OS % memory % ALU % branch % jump
Loonix 30 25 15 30

Playdows 20 30 25 25

Given the available budget we can afford to make one of these two possible changes in
the next generation of the processor:

• Reduce the number of cycles needed by memory instructions from 4 to 2, or
• Reduce the number of cycles needed by conditional branches from 2 to 1.

Which change should we make? Give a quantitative argument to support your decision.

Reduce the number of cycles needed by memory instructions from 4 to 2.

An easy way to see this is to look at the contribution of each type of instruction to
the CPI before and after the proposed change. For the memory instructions:

OS CPI contribution
was

New CPI
contribution

CPI
improvement

Loonix 4 * 0.3 = 1.2 0.6 0.6
Playdows 4 * 0.2 = 0.8 0.4 0.4

The change in branch instructions would have the following effect:

OS CPI contribution
was

New CPI
contribution

CPI
improvement

Loonix 2 * 0.15 = 0.3 0.15 0.15
Playdows 2 * 0.25 = 0.5 0.25 0.25

For both systems, the reduction in CPI is significantly better if we double the speed
of the memory instructions.

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 6 of 11

Question 5. (18 points) On the midterm exam we added a set of conditional branch
instructions to the single-cycle MIPS datapath. These branches were similar to the
branch instructions already supported by the processor (BEQ, BNE, BLEZ, and BGTZ),
except they compared a value in memory to a register instead of comparing two registers.
For example:

 MBEQ $rs,$rt,label branch to label if M[R[$rs]] = R[$rt]
 MBLEZ $rs,$zero,label branch to label if M[R[$rs]] <= 0

(a) On the diagram on the next page, add support for these instructions to the 5-cycle
pipelined datapath. All values required to implement the instructions must be pipelined
as necessary, and all other instructions supported by the processor should continue to
work. Add anything you need: wires, busses, ports, muxes, and/or logical units; however
you may not add additional pipeline stages (it still must remain a 5-cycle processor).
Don’t worry at this point about timing issues or interactions with later instructions in the
pipeline.

(b) Given your solution to part (a), will your changes have any effect on the timing or
clock speed of the processor datapath? Why or why not?

This depends on what was added to the processor in your solution to part (a).

In the sample solution on the next page an ALU is added to the memory stage. This
means there will be an extra delay in that stage and that will limit the possible clock
frequency.

If your solution makes different changes to the processor your answer to this part of
the question was evaluated based on any timing changes that are implied by your
solution.

(c) These new conditional branch instructions store a new value into the PC if the branch
is taken. Does your solution to part (a) create any new hazards in the pipeline requiring
additional forwarding, stalls, or branch delays? Briefly describe any new issues
introduced by your design and how they could be handled. You can use either hardware
or software solutions, or a combination of both.

Yes. There are now three branch delay slots rather than one. These must be
accounted for in hardware (stalls or flushing instructions that will not be used) or in
software (compiler inserted nops or other instructions in the delay slots). There is
also a new possible control hazard if a normal control instruction appears after one
of the new memory-branch instructions. This either requires a stall in the hardware
or care in the compiler to avoid generating instruction sequences that encounter this
problem.

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 7 of 11

Question 5. (cont.) Draw your answer to part (a) on this diagram:

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 8 of 11

Question 6. (14 points) We are writing a simulator for a processor with a conventional
32-bit virtual memory system that has 2-level page tables:

The memory system has the following characteristics:

• 4 GB virtual address space (32-bit addresses)
• 4 GB physical address space
• 4 KB pages
• Each page table occupies exactly one (1) physical page.

Given these parameters, the address offsets are 12 bits, and the virtual page number parts
(vpn1 and vpn2) are 10 bits each. There are 1024 entries in each page table.

Each page table entry in both the 1st and 2nd level page tables occupies 32 bits and is
formatted as follows:

1 1 10 bits 20 bits
V D unused physical page number

The V and D bits indicate valid (1 if present, 0 if not) and dirty (1 if modified, 0 if not).

As we said before, we’re writing a simulator for this processor. On the next page,
implement in MIPS assembly language a function that will translate a virtual address to a
physical address, given the contents of the page table register (the address of the 1st level
page table) and the virtual address to be translated. Your function should return the
physical address if the translation is possible, or return -1 (0xffffffff) if a page fault
occurs because of an invalid (V=0) page table entry is encountered.

Feel free to remove this page for reference while working on your solution to the
problem.

Page tbl register 1st
level
page
table

2nd
level
page
table

2nd
level
page
table

 ppn offset

 vpn1 vpn2 offset

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 9 of 11

Question 6. (cont) Give your implementation of the virtual-to-physical address
translation algorithm using MIPS assembly language below.

Hint: Logical operations (and, or, etc.) and shift instructions are particularly useful for
isolating and combining the bits needed to perform the translation.

 # Translate a virtual address to a physical address
 # Input:
 # $a0 address of first-level page table
 # $a1 virtual address to be translated
 # Output:
 # $v0 physical address corresponding to virtual
 # address if translation succeeds or 0xFFFFFFFF
 # if a page fault occurs

 vir2phys:
 srl $t0,$a1,20
 andi $t0,$t0,0xFFC # $t0 = vpn1*4
 or $t0,$t0,$a0 # $t0 = addr 1st level pte
 lw $t0,0($t0) # $t0 = 1st level pte
 bge $t0,$zero,fault # page fault if sign bit = 0
 sll $t0,$t0,12 # $t0 = addr 2nd level pg tbl
 srl $t1,$a1,10
 andi $t1,$t1,0xFFC # $t1 = vpn2*4
 or $t1,$t1,$t0 # $t1 = addr 2nd level pte
 lw $t1,0($t1) # $t1 = 2nd level pte
 bge $t1,$zero,fault # page fault if sign bit = 0
 sll $t1,$t1,12 # $t1 = ppn part of address
 andi $v0,$a1,0xFFF # $v0 = offset bits
 or $v0,$v0,$t1 # $v0 = physical address
 jr $ra # return

 fault: # return -1 = 0xFFFFFFFF
 li $v0,-1 # after page fault
 jr $ra

Note: The above code uses logical “or” operations to combine page frame addresses
with offsets and indices. It should work just as well to use add instructions in this
case, but since we really are concatenating bits to form addresses the logical
operations might make the intent a little clearer.

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 10 of 11

Question 7. (12 points) A few short-answer questions.

(a) Caches can use either a write-back or a write-through policy. What are these policies
and how do they differ? Which one is most likely to improve cache performance and
why?

Write-back = writes go only to the cache, and new values are only written to main
memory when the block is evicted from the cache.

Write-through = new values are immediately written directly to main memory.

Write-back is normally better for performance since multiple writes to a single
cache block (which are likely because of both temporal and spatial locality) can be
done using only the cache and do not require the time or bandwidth needed to write
to main memory for every update.

(b) Suppose we are designing a 32K cache with 64-byte blocks. We have a choice
between a direct-mapped cache with 512 rows, or a 2-way set associative cache with 256
rows (sets), but two blocks per row. Which would be the better choice generally and
why? (Give a brief technical justification for your answer).

The 2-way associative cache is more likely to improve performance. With a direct-
mapped cache, each main memory block can only be held in a single location in the
cache. If two main memory blocks are in active use and, unfortunately, require the
same cache location, they will force each other out of the cache repeatedly. With a
2-way associative cache both of the blocks can more likely be retained in the cache
at the same time.

Question 7 (cont.) (c) Many of the I/O devices connected to computers use a Direct
Memory Access (DMA) interface. What does this mean? What is the major difference
between how DMA and non-DMA devices perform I/O?

Once an I/O operation is initiated with a DMA device, the device handles transfers
of data between the device and memory by grabbing control of the bus when needed
to transfer the next piece of data. Without DMA the processor needs to control the
data transfer piece-by-piece, which decreases the amount of processor cycles
available for other work.

 CSE 378 Final Exam 3/14/11 Sample Solution

 Page 11 of 11

Question 8. (10 points) Finally, to finish up, here are some true/false questions. Circle
the correct answer.

a) True / False. MIPS is a load-store architecture.

b) True / False. The decimal number 127 as a 32-bit two's complement hexadecimal

number is 0xFFFFFF83.

c) True / False. Pipelining takes advantage of instruction level parallelism.

d) True / False. A CPU with a faster clock frequency always has higher performance

than one with a slower clock.

e) True / False. The MIPS move instruction is a pseduo-instruction.

f) True / False. Temporal locality refers to the idea that data in memory which is

close in address to memory data which has recently been accessed is likely to be

accessed soon.

g) True / False. For a virtual memory system with 48-bit virtual addresses, a single

page table and 4 KB physical page size, the width of the virtual page number

portion of an address is 34 bits.

h) True / False. Page faults are handled by the operating system.

i) True / False. The opcode field of all J-format MIPS instructions is 0.

j) True / False. I enjoyed this class. (All honest answers receive credit for this part.)

