
 CSE 378 Midterm 2/12/10

 Page 1 of 9

Name _______________________________________

There are 7 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

Copies of the MIPS reference card (“green card”) have been handed out separately and
you can refer to that. Otherwise the exam is closed book, closed notes, closed neighbors,
closed electronics, closed telepathy, etc.

Please wait to turn the page until everyone is told to begin.

Score __________

1 _______ / 6

2 _______ / 6

3 _______ / 6

4 _______ / 22

5 _______ / 20

6 _______ / 20

7 _______ / 20

 CSE 378 Midterm 2/12/10

 Page 2 of 9

Question 1. (6 points) (a) Rewrite the instruction sub $v0,$t8,$a2 using absolute
register numbers instead of symbolic names (i.e., if the instruction contained $at, you
would rewrite that as $1.)

(b) Rewrite the instruction from part (a) in binary. Use vertical lines to show which
fields of the instruction are which, and write the field names (op, rd, etc.) underneath the
bits that make up that field.

Question 2. (6 points) What is the value of the decimal number -129 if it is converted to
a 32-bit, 2’s-complement binary integer? Write your answer in hexadecimal.

(Suggestion: It might be useful to show your intermediate steps so if there’s a mistake
it’ll be easier to figure out what happened.)

 CSE 378 Midterm 2/12/10

 Page 3 of 9

Question 3. (6 points) Suppose we have the following 32-bit word labeled n located at
address 0x1000001c in an assembly language program.

 [0x1000001c] n: .word 42

MIPS assembly language allows us to write lw $t0,n to load this word into register
$t0. Although lw is a real machine instruction and not a pseudo-instruction, this line of
assembly language code cannot be translated into a single machine instruction because
the address 0x1000001c does not fit into the 16-bit offset field in a single lw
instruction. Give a sequence of two actual machine instructions that perform the desired
lw $t0,n operation and that could be used in a program without interfering with
surrounding instructions. Write your answer using symbolic assembly language notation,
not binary.

 CSE 378 Midterm 2/12/10

 Page 4 of 9

Question 4. (22 points) MIPS Hacking. A fast way to search an unordered list is a
sentinel search, where we place the item we are looking for at the end of the list after all
the data currently in it, then search until we find it and report whether it was found at the
sentinel location or earlier. For this problem, write a MIPS assembly language version of
the following C sentinel search function.

 /* Search for x in A[0..n-1]. Return 1 if found, else 0. */
 /* Precondition: A has capacity for n+1 or more int values */
 int find(int x, int A[], int n) {
 A[n] = x;
 k = 0;
 while (A[k] != x) {
 k++
 }
 if (k < n)
 return 1;
 else
 return 0;
 }

You should use the standard MIPS calling and register conventions (initially, $a0 =
value of x, $a1 = address of array A, $a2 = value of n). You do not need to allocate a
stack frame if you do not need one.

You may use either explicit subscripting operations or pointers or both to reference array
elements, whichever is more convenient.

Include brief comments to make it easier to follow your code.

Write

 your

 answer

 on

 the

 next

 page.

(You can tear this page out for reference while you work, if that is helpful.)

 CSE 378 Midterm 2/12/10

 Page 5 of 9

Question 4. (cont.) Write your answer here. C code repeated for reference (reformatted
to save space).

 /* Search for x in A[0..n-1]. Return 1 if found, else 0. */
 /* Precondition: A has capacity for n+1 or more int values */
 int find(int x, int A[], int n) {
 A[n] = x;
 k = 0;
 while (A[k] != x) { k++ }
 if (k < n) return 1; else return 0;
 }

 CSE 378 Midterm 2/12/10

 Page 6 of 9

The following question concerns the single-cycle MIPS datapath shown below.

4

Shift
left 2

PC Add

Add

0
M
u
x
1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1
M
u
x
0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0
M
u
x
1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0
M
u
x
1

ALUSrc

Result

Zero
ALU

ALUOp

Question 5. (20 points) For each of the following instructions, fill in the blanks in the
table below to indicate the settings of the control signals to execute that instruction. Each
control signal must be specified as 0, 1, or X (don’t care). Writing a 1 or a 0 when an X
is more accurate is not correct. If a control signal is a logical function of one or more
other signals, write that function. For ALUOp, you can write things like “add” or “xor”,
since we don’t expect you to have memorized the binary ALUOp signals.

Opcode RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg PCSrc

sub

lw

bne

 CSE 378 Midterm 2/12/10

 Page 7 of 9

Question 6. (20 points) Suppose we want to add a new R-format instruction to the
MIPS ISA to compute the absolute value of a 32-bit integer. The new instruction is
abs rd,rs, and it stores the absolute value of rs in rd.

A diagram of the simple 5-stage MIPS pipelined CPU we will modify is on the next page.

(a) To implement this instruction, we decide to add a new module to the datapath.
Complete the following Verilog module absComp so that it generates the absolute value
of inVal on the output absVal. (Don’t be alarmed if the solution is quite short.)

 module absComp(inVal, absVal);
 input wire [31:0] inVal;
 output wire [31:0] absVal;

endmodule

(continued on next page)

 CSE 378 Midterm 2/12/10

 Page 8 of 9

Question 6. (cont.) (b) The following diagram is a simple version of the 5-stage MIPS
pipelined CPU from class. The controller has a new output wire named ABS, which is
high when the controller decodes an abs instruction and low otherwise. Add in and
properly wire up the absComp module from part (a) into this datapath.

 CSE 378 Midterm 2/12/10

 Page 9 of 9

Question 7. (20 points) Pipeline hazards. Consider this sequence of MIPS instructions

 addi $t1, $zero, 17

 lw $t2, 0($a0)

 add $v0, $t1, $t2

 lw $t3, 4($a0)

 add $v0, $v0, $t3

(a) Describe all of the data dependencies in the above instructions. You can draw arrows
on the instructions above to show your answer or you can write an explanation below.

(b) Assuming that we execute these instructions as written on a processor with a 5-stage
pipeline with forwarding, fill in the diagram below to show how this sequence of
instructions executes. Show stalls in the schedule, if any, by writing “stall” in that
square. The first row for the addi instruction and the first two cycles of the next two
instructions are written for you.

cycle 1 2 3 4 5 6 7 8 9 10 11 12

addi IF ID EX MEM WB

lw IF ID

add IF

lw

add

(c) Reorder the instructions into a new schedule (sequence) so they will execute without
any stalls on a 5-stage pipeline with forwarding, if that is possible, or as few stalls as
possible. Write the reordered instructions below.

How many stall cycles are there in your new schedule above, if any? ________

