
 CSE 378 Final 3/18/10  Sample Solution 

  Page 1 of 9 

 
 
Name _______________________________________ 
 
There are 10 questions worth a total of 100 points.  Please budget your time so you get to 
all of the questions.  Keep your answers brief and to the point. 
 
Copies of the MIPS reference card (“green card”) have been handed out separately and 
you can refer to that.  Otherwise the exam is closed book, closed notes, closed neighbors, 
closed electronics, closed telepathy, etc., but open mind…  You won’t need a calculator 
either, so please keep that stowed in the overhead compartment or under the seat in front 
of you – or whatever is equivalent in this room. 
 
Please wait to turn the page until everyone is told to begin. 
 
 
 
 
Score __________ 
 
 
1 _______ / 20 
 
2 _______ / 14 
 
3 _______ / 6 
 
4 _______ / 5 
 
5 _______ / 7 
 
6 _______ / 12 
 
7 _______ / 12 
 
8 _______ / 12 
 
9 _______ / 6 
 
10 ______ / 6 
 

Some powers of 2 (in case you need them) 
 

n 2n 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

10 1 024 
11 2 048 
12 4 096 
13 8 192 
14 16 384 
15 32 768 
16 65 536 
20 1 048 576 
24 16 777 216 
30 1 073 741 824 
31 2 147 483 648 
32 4 294 967 296 

 



 CSE 378 Final 3/18/10  Sample Solution 

  Page 2 of 9 

Question 1. (20 points)  To warm up, write a MIPS assembly language function that is 
equivalent to the following C function: 
 
 int thing(int x, int y) { 
  int a, b; 
  b = x+y; 
  a = compute(x); 
  if (a > 0) 
   return a; 
  else; 
   return b; 
 } 
 
You should follow the standard MIPS conventions for register usage, function calls, and 
stack frames.  Assume that function compute is an integer-valued function that is 
written elsewhere and can be called with an appropriate jump to the label compute. 
 
 # on entry: $a0 = x, $a1 = y 
 
 thing: addi  $sp, $sp, -8  # allocate stack frame 
    sw   $ra, 0($sp)  # save return address 
    add  $t0, $a0, $a1 # b = x+y 
    sw   $t0, 4($sp)  # save b 
    jal  compute   # a = compute(x) 
    slt  $t0, $0, $v0  # t1 = “0 < a” 
    bne  $t0, $0, exit # return a if 0 < a 
    lw   $v0, 4($sp)  # return b if not 
 exit: lw   $ra, 0($sp)  # restore return address 
    addi  $sp, $sp, 8  # release stack frame 
    jr   $ra   # return 
 
There are, of course, many possible solutions.  There were, however, a couple of 
unusual things we found while reading through the exams. 
 

• A surprising number of solutions initialized registers to 0 before using them 
with instructions like  add $t0,$0,$0.  That makes no more sense than 
initializing a variable to 0 in a C  or Java program before assigning a 
different value to it.  But since it doesn’t make the code fail, there was no 
penalty. 

• Most solutions allocated stack frames to save values, but the code to allocate 
and free the stack frame was in all sorts of odd places.  It’s much more 
straightforward to do it at the beginning and end of the function, and that’s 
how compiled code almost always works. 

 



 CSE 378 Final 3/18/10  Sample Solution 

  Page 3 of 9 

Question 2.  (14 points)  Suppose we have a cache that has 16-word (64-byte) blocks.  
The total size of the cache is 64 blocks (= 4,096 bytes), and the cache is direct mapped.   
Now, suppose we have a C program that contains a 32x32 array of doubles.  Each 
double-precision number occupies 2 words (8 bytes).  C arrays are stored in row-major 
order: row 0 is followed in memory by row 1, then row 2, etc. 
 
  double matrix[32][32]; 
 
(a)  What is the cache miss rate if we use the following code to store 0’s in the array?  
You can give an appropriate formula or brief explanation and do not need to calculate the 
final numeric answer. 
 
  for (r = 0; r < 32; r++) 
   for (c = 0; c < 32; c++) 
    matrix[r][c] = 0.0; 
 
 
Miss rate = 1/8. 
 
This version goes through the memory locations assigned to matrix sequentially.  
There will be a miss when the first variable in each cache block is accessed.  The 
remaining variables in each block will found in the cache.  Since each block holds 8 
doubles, 1/8 of the array elements will cause a miss. 
 
 
 
(b)  What is the cache miss rate if we use the following code to store 0’s in the array? 
(same code, except the order of the two outer loops is reversed)  Again, it’s ok to just 
give a formula. 
 
  for (c = 0; c < 32; c++) 
   for (r = 0; r < 32; r++) 
    matrix[r][c] = 0.0; 
 
 
100% 
 
In this version, each reference to an array element causes a cache miss.  The first 
time through the outer loop we only reference the first column of each row.  Since 
all of these are in different cache blocks, there will be a fault on each one.  Further, 
because the cache can only hold half of the array, by the time we reference a cache 
block for the second time on the next iteration of the loop it will have been flushed 
from the cache by earlier references to different parts of the array. 
 
 
(continued next page) 



 CSE 378 Final 3/18/10  Sample Solution 

  Page 4 of 9 

Question 2.  (cont.)  (c)  If the cache were 2-way set associative instead of direct 
mapped, but had the same size, would the miss rate for part (b) change significantly?  
Why or why not? 
 
No change – still 100%.  The cache still does not have enough space to hold the 
entire array, and since we are still accessing it in column-major order, each cache 
block will be flushed by the time we reference it again. 
 
 
 
 
 
Question 3.  (6 points)  Some things never change.  The machine in the Allen Center 
lobby is a Digital Equipment Corp. VAX computer.  The basic architecture included two 
main busses for connecting external devices: a Massbus for disks and tape drives, and a 
Unibus to connect terminals, networks, printers, and similar things. 
 
 
 
 
 
 
 
 
 
 
 
Why do you think they had two different busses?  Why not attach everything to one bus, 
or have several identical busses to connect the various I/O devices? 
 
 
The fast bus used to service the high-speed devices was more expensive and complex 
than the slower bus.  Using the Massbus for everything would have required 
expensive interfaces for the slower devices, and it would have been more difficult to 
handle the fast, streaming devices while also dealing with the slower ones.  The 
Unibus was cheaper and provided adequate service for the slower deices, but 
wouldn’t have been able to keep up with the faster disks and tapes. 
 
 
 
 
 

backplane 

CPU memory 
massbus unibus 

disks 

terminals, printers, network, etc. 



 CSE 378 Final 3/18/10  Sample Solution 

  Page 5 of 9 

Question 4.  (5 points)  For each of the following, put an X in the box that is closest to 
the correct order of magnitude for the speed of that operation on a typical current, 
consumer desktop or laptop computer.  (You may assume “typical” ≈ 2GHz processor) 

 
What 100ms 10ms 1ms 100µs 10µs 1µs 100ns 10ns 1ns 100ps 10 ps 
ALU add 
operation         X   

Read CPU 
register         X   

Read cache 
memory         X   

Read main 
memory       X X    

Read from 
disk   X          

Main memory cycle time is on the order of dozens of ns, so we gave credit for either 
100ns or 10ns (even though 10ns is closer to the right order of magnitude). 
 
Question 5.  (7 points)  All modern processors have two modes: system mode, where all 
operations are permitted, and user mode, where certain operations are disabled.  Ordinary 
programs run in user mode so they cannot make changes to parts of the system that would 
allow them to bypass protections, read or write unauthorized data, or otherwise interfere 
with the operation of the system.  For each of the following, check the box in the “user 
mode” column if it is safe to allow these operations in user mode.  Otherwise check 
system mode. 
 
Operation OK in user 

mode 
System mode 
only 

Store a value in a general register like $t0 
 X  

Disable interrupts so nothing will interrupt the current 
process while it does something important  X 

Change the page table register that points to the current 
program’s page tables  X 

Change the program counter 
 X  

Initiate an I/O operation on a raw disk device using 
memory-mapped I/O  X 

Execute a compare-and-swap instruction to grab an 
exclusive lock for some concurrent data structure X  

Switch from user to system mode 
 X * 

*A user program can’t be allowed to switch to system mode and continue execution, 
but it does need to be able to switch to system mode as part of a call to get operating 
system services.  The question wasn’t clear as to which was meant, so we gave credit 
for either answer.



 CSE 378 Final 3/18/10  Sample Solution 

  Page 6 of 9 

Question 6.  (12 points)  Suppose we have a processor that has the following CPI figures 
for different kinds of instructions: 
 

Kind CPI 
load/store 5 
ALU 1 
branch 2 

 
Now, suppose we have two programs that have the following percentage breakdown of 
instructions executed: 
 

Application %  load/store % ALU % branch 
A 25 60 15 
B 20 70 10 

 
 
(a)  What is the CPI for Application A?  (As before, it’s ok to just give the formula and 
not crank out the final answer.) 
 
 
 CPIA = 5 * 0.25 + 1 * 0.6 + 2 * 0.15 = 2.15 
 
 
 
 
 
 
 
(b) Now suppose we design a much better memory system that reduces the CPI for 
load/store instructions on our processor to 2.  How much does application B speed up?  
(Formula is ok here too.) 
 
Original CPIB = 5 * 0.2 + 1 * 0.7 + 2 * 0.1 = 1.9 
 
New CPIB = 2 * 0.2 + 1 * 0.7 + 2 * 0.1 = 1.3 
 
The speedup is:  change / old = 0.6 / 1.9 = 31.6%.  We gave credit for any answer 
that showed a reasonable comparison between the old and new CPI values, even if it 
wasn’t expressed exactly like this. 
 
 
 



 CSE 378 Final 3/18/10  Sample Solution 

  Page 7 of 9 

Question 7.  (12 points)  The Round Number Disk Company manufacturers a disk with 
the following characteristics: 
 

• Rotation speed: 6000 rpm 
• Seek time (average): 10 ms 
• 500 bytes per disk sector 
• 200 sectors per track 
• Overhead time for each I/O request: 2 ms. 
• Data can be transferred as fast as it moves under the disk read/write heads 

 
Give equations for each of the following.  You do not need to compute the final answer. 
 
(a)  Time needed to read one disk sector at a random location on the disk: 
 
 The rotation time of the disk is 60/6000 sec = 10 ms. 
 
 T = seek + rotation delay + transfer + overhead 
 
    = 10 ms + 10 ms/2 + 10 ms/200 + 2ms = 17.05 ms. 
 
 
 
(b)  Time needed to read all of the sectors on a single track sequentially (i.e., time to read 
a full 100,000 byte track in order): 
  
There were a couple of ways to answer this question (alas).  If we assume that 
transfers need to start at the beginning of a specific sector, then the rotational 
latency stays the same and the transfer time becomes 10 ms, or 1 revolution of the 
disk.  In that case the total time is 27 ms. 
 
If we assume that we can start the transfer anywhere on the track and reassemble 
the data after it is transferred (which is a reasonable assumption), then the 
rotational latency is 0 and the total time is 22 ms. 
 
On a real disk, the transfer would probably have to start at the beginning of a 
sector, even if we start reading anywhere, so there would be a small latency term 
equal to the time for 1/2 sector to move under the heads.  



 CSE 378 Final 3/18/10  Sample Solution 

  Page 8 of 9 

Question 8.  (12 points)  We would like to figure out the details of a virtual memory 
system.  We have a 2-level page table: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The memory system has the following characteristics: 
 

• 2 GB virtual address space 
• 8 GB physical address space 
• 16 KB pages 
• Each 2nd level page table occupies exactly one (1) physical page. 

 
Fill in the following: 
 
Number of bits in the offset part of the address ______14________ 
 
Number of physical page number (ppn) bits ______33-14 = 19_______ 
 
Number of bytes in each page table entry (smallest power of 2 needed to hold ppn, valid,  

  and dirty bits)  ___4 (21 bits)______ 

Number of entries in each 2nd level page table ______16K/4 = 4096_______ 
 
Number of bits in vpn2 part of virtual address used to index 2nd level page table __12___ 
 
Number of bits in vpn1 part of virtual address used to index 1st level page table ___5____ 
 
Number of entries in 1st level page table ____32_____  
 
Number of bytes in 1st level page table _____128______ 

Page tbl register 1st 
level 
page 
table 

2nd 
level 
page 
table 

2nd 
level 
page 
table 

ppn                         offset 

vpn1             vpn2                       offset 



 CSE 378 Final 3/18/10  Sample Solution 

  Page 9 of 9 

Question 9.  (6 points)  Why do systems have 2- and 3-level page table designs like the 
one in the previous question?  After all, the design and implementation of a virtual 
memory system with multiple levels of page tables is significantly more complex than 
using a single page table.  What problem or problems are solved by using a multiple level 
page table? 
 
 
To save space.  For example, in a typical system with 32-bit addresses and 4K pages, 
a flat page table would need 220 or roughly 1 million entries, even though most 
programs use only a tiny fraction of the available address space. 
 
 
 
 
 
 
 
 
 
 
Question 10.  (6 points)  Both the cache and the TLB perform a similar function – they 
are small, fast, expensive memories that hold currently active data that normally resides 
in larger, slower, cheaper storage.  One significant difference is that TLBs are often fully 
associative memories, while caches almost never are.  Explain why this is.  Why is a fully 
associative memory an appropriate design choice for a TLB, yet this is rarely a good idea 
for a cache? 
 
TLBs are typically small, containing far fewer entries than a cache.  A fully 
associative memory is reasonable for a TLB, while for a cache the logic needed for a 
fully associative memory would be too complex, expensive, and slow. 


