

Name _________Sample Solution____________________

Do Not Open The Test
Until Told To Do So

Midterm Exam – CSE378 Autumn 2008 Anderson

This is closed book, closed notes, closed calculator and closed neighbor.

1. [3 points] If x = 0011 1010 1010 1001 0101 0011 1011 1100 what is –x
in binary?

 1100 0101 0101 0110 1010 1100 0100 0100

2. [3 points] Covert the hexadecimal number 3D2AE1F7 to binary representation.

 0011 1101 0010 1010 1110 0001 1111 0111

3. [3 points] MIPS calling conventions reserves registers for passing arguments to a

function. Give their names: __$a0, $a3_____________

4. [5 points] Write MIPS assembly code to put 0x1234ABCD into register $1.

 lui $1, 0x1234
 ori $1, $1, 0xABCD

5. [4 points] With a beq instruction it is possible to branch to addresses in what
range?

 (PC + 4) ± 217 (Of course we will only branch to the ones that are
aligned on a 4-byte boundary, but this is the range of addresses.)

5. [5 points] Using the “green card”, translate the following machine code into MIPS
code – be sure to include the correct register names, addresses, immediate values,
etc. represented in the order they would appear in the MIPS instruction.
(Hint: mark the boundaries between the instruction’s fields.)

1010 1101 1010 1001 0000 0000 0011 0010

 sw $9, 50($13) or sw $t1, 50($t5)

6. [5 points] MIPS hardware does not directly implement the pseudo-instruction:
 bge $7, $8, location

but rather the assembler generates appropriate real instructions that implement this
behavior. Show the kind of MIPS code it might create for this instruction.

slt $at, $7, $8 or slt $1, $7, $8
beq $at, $zero, location beq $1, $0, location

7. [7 points total] a) Suppose that $t0 holds the base address of an array of integers,
A. Give MIPS code that loads the value of A[5] into register $t2. (Hint: You
can do this in one instruction.)

 lw $t2, 20($t0)

 b) Suppose that $t0 holds the base address of an array of integers, A, and $t1
holds the current value of an integer, n. Give MIPS code that loads the value of
A[n] into register $t2.

 sll $t1, $t1, 2 # mult n by 4
 add $t3, $t0, $t1 # add to base address of array A
 lw $t2, 0($t3) # load A[n] into reg $t2

8. [5 points] Function A calls function B. Function B calls function C. Function A
cares about the values it has stored in registers $s0 and $s1. Function B does not
use registers $s0 and $s1. Function C does use registers $s0 and $s1.

a. Who, if anyone should save registers $s0 and $s1?

Function C (but also function A would have had to save them at the
beginning of function A - before putting values in them)

b. Who, if anyone should restore registers $s0 and $s1?

Function C (but also function A would have had to restore them at the
end of function A)

c. If someone were going to save registers $s0 and $s1, where should they

save them?

 On the stack.

 {Note: It was o.k. to only say Function C, or to say A and C. Any function
that uses $s0 or $s1 is responsible for saving them on the stack (at the beginning of
the function) and restoring them (at the end of the function).}

9. [25 points] Write a MIPS function that finds the two largest values in the array
int A[n]. Assume $a0 contains the address of A, and $a1 contains n, the
number of elements in array A. You should place the largest value in $v0 and the
second largest in $v1. You may use pseudo instructions for this question.

Register usage:
$v0 largest value
$v1 second largest value
$t0 loop counter i
$t1 temp for A[i] address calculation
$t2 A[i]

Note: Assumes n >= 1

find_largest:
 lw $v0, 0($a0) # v0 holds largest value
 lw $v1, 0($a0) # v0 holds second largest value
 move $t0, $zero # t0 is the loop counter, i

loop:
 bge $t0, $a1, exit_largest # loop while i < n

 sll $t1, $t0, 2 # t1 <- i * 4
 add $t1, $t1, $a0 # t1 <- address of A[i]
 lw $t2, 0($t1) # t2 <- A[i]
 add $t0, $t0, 1 # increment i

 bgt $t2, $v0, largest # found new largest
 bgt $t2, $v1, sec_largest # found new 2nd largest
 j loop # otherwise return to top of loop

largest:
 move $v1, $v0 # old largest becomes new 2nd largest
 move $v0, $t2 # update new largest value
 j loop

sec_largest:
 move $v1, $t2 # update new 2nd largest value
 j loop

exit_largest:
 jr $ra # return to caller

Notes: This solution handles negative values in the array although it was o.k. if you
did not. In some cases, I overlooked other minor errors if you went to the trouble to
handle negative values in the array or other error handling (e.g. size of the array).

10. [7 points] In the diagram below, highlight in color those portions of the circuit
that are active when computing the address for a branch instruction. (Note, other
portions will be active in this single cycle implementation; mark only those
portions that contribute to the address calculation, including control.)

[PC-> 1st Adder, 1 st Adder to 2 nd Adder, [15-0] -> sign extend -> shift
left 2 -> 2 nd adder]

11. [3 points] Give the control lines (but not their settings) that need to be used to
implement the whole branch instruction above. PCSrc, ALUOp, ALUSrc

12. [7 points] In the accompanying diagram mark in color those portions of the circuit
active during the second cycle of our multicycle processor design.

[Reading Registers (inputs to reg file and outputs to A and B) and
calculating Branch address (sign extend and shift i mmediate field, add to
PC)] ALUSrcA and ALUSrcB, as well as ALUOp would be set.

4

Shift
left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read
address

Write
address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read
address

Instruction
memory

Instruction
[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Sign
extend

0

M
u
x

1

ALUSrc

Result

Zero
ALU

ALUOp

Result

Zero
ALU

ALUOp

0

M
u
x

1

ALUSrcA

0

1

2

3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

M
u
x

1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

 IRWrite
0

M
u
x

1

 RegDst

0

M
u
x

1

 MemToReg

0

M
u
x

1

IorD

MemRead

MemWrite

PCWrite

