
Lectures 24-25

Parallelism

1

Pipelining vs. Parallel processing

In both cases, multiple “things” processed by multiple “functional units”

Pipelining: each thing is broken into a sequence of pieces, where each
piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single
functional unit

We will briefly introduce the key ideas behind parallel processing
instruction level parallelism— instruction level parallelism

— data-level parallelism
— thread-level parallelism

2

Exploiting Parallelism

Of the computing problems for which performance is important, many
h i h t ll lihave inherent parallelism

Best example: computer games
— Graphics, physics, sound, AI etc. can be done separately
— Furthermore, there is often parallelism within each of these:

• Each pixel on the screen’s color can be computed independently• Each pixel on the screen s color can be computed independently
• Non-contacting objects can be updated/simulated independently
• Artificial intelligence of non-human entities done independently

Another example: Google queries
— Every query is independent
— Google is read-only!!

3

Parallelism at the Instruction Level

add $2 <- $3, $4
or $2 < $2 $4

Dependences?
RAWor $2 <- $2, $4

lw $6 <- 0($4)
addi $7 <- $6, 0x5
sub $8 <- $8, $4

RAW
WAW
WAR

When can we reorder instructions?

add $2 <- $3, $4

When should we reorder instructions?

$ $, $
or $5 <- $2, $4
lw $6 <- 0($4)
sub $8 <- $8, $4
addi $7 < $6 0x5

Surperscalar Processors:
Multiple instructions executing in
parallel at *same* stage

addi $7 <- $6, 0x5

4

OoO Execution Hardware

5

Exploiting Parallelism at the Data Level

Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i 0 ; i < length ; ++ i) {for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}}

Operating on one element at a time

+

6

Exploiting Parallelism at the Data Level

Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i 0 ; i < length ; ++ i) {for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}}

Operating on one element at a time

+

7

Exploiting Parallelism at the Data Level (SIMD)

Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i 0 ; i < length ; ++ i) {for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}}

Operate on MULTIPLE elements

+ + + + Single Instruction,
Multiple Data (SIMD)

8

Intel SSE/SSE2 as an example of SIMD

• Added new 128 bit registers (XMM0 – XMM7), each can store
4 i l i i FP l (SSE) 4 * 32b— 4 single precision FP values (SSE) 4 * 32b

— 2 double precision FP values (SSE2) 2 * 64b
— 16 byte values (SSE2) 16 * 8b
— 8 word values (SSE2) 8 * 16b
— 4 double word values (SSE2) 4 * 32b
— 1 128-bit integer value (SSE2) 1 * 128b

4.0 (32 bits) 4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

+ 2.3 (32 bits)1.7 (32 bits)2.0 (32 bits)-1.5 (32 bits)

0.3 (32 bits)5.2 (32 bits)6.0 (32 bits)2.5 (32 bits)

9

Is it always that easy?

Not always… a more challenging example:

unsigned
sum_array(unsigned *array, int length) {

int total = 0;
for (int i = 0 ; i < length ; ++ i) {

total += array[i];
}}
return total;

}

Is there parallelism here?

10

We first need to restructure the code

unsigned
sum array2(unsigned *array int length) {sum_array2(unsigned array, int length) {

unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {(; g ;) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}

t t t lreturn total;
}

11

Then we can write SIMD code for the hot part

unsigned
sum array2(unsigned *array int length) {sum_array2(unsigned array, int length) {

unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {(; g ;) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}

t t t lreturn total;
}

12

Thread level parallelism: Multi-Core Processors

Two (or more) complete processors, fabricated on the same silicon chip
Execute instructions from two (or more) programs/threads at same time

#1 #2

IBM Power5

13

IBM Power5

Multi-Cores are Everywhere

Intel Core Duo in Macs, etc.: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric
lti ith 9 (1 l 8 multi-core with 9 cores (1 general-purpose, 8

special purpose SIMD processors)

14

Why Multi-cores Now?

Number of transistors we can put on a chip growing exponentially…

15

… and performance growing too…

But power is growing even faster!!
— Power has become limiting factor in current chips

16

— Power has become limiting factor in current chips

As programmers, do we care?

What happens if we run a program on a multi-core?

idvoid
array_add(int A[], int B[], int C[], int length) {

int i;
f (i 0 i < l th ++i) {for (i = 0 ; i < length ; ++i) {
C[i] = A[i] + B[i];
}

}}

#1 #2

17

What if we want a program to run on both processors?

We have to explicitly tell the machine exactly how to do this
Thi i ll d ll l i i— This is called parallel programming or concurrent programming

There are many parallel/concurrent programming models
— We will look at a relatively simple one: fork-join parallelism
— In CSE 303, you saw a little about threads and explicit synchronization

18

Fork/Join Logical Example
1.Fork N-1 threads
2.Break work into N pieces (and do it)
3 Join (N 1) threads3.Join (N-1) threads

void
array add(int A[] int B[] int C[] int length) {array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
int i;
for (i = cpu_num ; i < length ; i += N) {
C[i] = A[i] + B[i];

}
join();

}}

How good is this with caches?How good is this with caches?

19

How does this help performance?

Parallel speedup measures improvement from parallelization:

time for best serial version
time for version with p processors

speedup(p) =

What can we realistically expect?

20

Reason #1: Amdahl’s Law

In general, the whole computation is not (easily) parallelizable

Serial regions

21

Reason #1: Amdahl’s Law
Suppose a program takes 1 unit of time to execute serially
A fraction of the program, s, is inherently serial (unparallelizable)

New Execution
Time =

1-s
+ s

p

For example, consider a program that, when executing on one processor, spends
10% of its time in a non-parallelizable region How much faster will this program10% of its time in a non-parallelizable region. How much faster will this program
run on a 3-processor system?

New Execution
i =

.9T
+ .1T = Speedup =

What is the maximum speedup from parallelization?

Time + .1T
3

p p

22

Reason #2: Overhead

void
array add(int A[] int B[] int C[] int length) {array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
int i;
for (i = cpu_num ; i < length ; i += N) {
C[i] = A[i] + B[i];

}
join();

}}

— Forking and joining is not instantaneous
• Involves communicating between processors• Involves communicating between processors
• May involve calls into the operating system

— Depends on the implementation

New Execution
Time =

1-s
+ s + overhead(P)

P

23

Programming Explicit Thread-level Parallelism

As noted previously, the programmer must specify how to parallelize
But, want path of least effort

Division of labor between the Human and the Compiler
— Humans: good at expressing parallelism, bad at bookkeeping
— Compilers: bad at finding parallelism, good at bookkeeping

Want a way to take serial code and say “Do this in parallel!” without:Want a way to take serial code and say Do this in parallel! without:
— Having to manage the synchronization between processors
— Having to know a priori how many processors the system has
— Deciding exactly which processor does what
— Replicate the private state of each thread

OpenMP: an industry standard set of compiler extensions
— Works very well for programs with structured parallelism.

24

Performance Optimization

Until you are an expert, first write a working version of the program
Then, and only then, begin tuning, first collecting data, and iterate

Oth i ill lik l ti i h t d ’t tt— Otherwise, you will likely optimize what doesn’t matter

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

25

Using tools to do instrumentation

Two GNU tools integrated into the GCC C compiler

Gprof: The GNU profiler
— Compile with the -pg flagp pg g

• This flag causes gcc to keep track of which pieces of source code
correspond to which chunks of object code and links in a profiling
signal handler.g

— Run as normal; program requests the operating system to periodically
send it signals; the signal handler records what instruction was
executing when the signal was received in a file called gmon.outg g g

— Display results using gprof command
Shows how much time is being spent in each function• Shows how much time is being spent in each function.

• Shows the calling context (the path of function calls) to the hot
spot.

26

Example gprof output

Each sample counts as 0.01 seconds.
% cumulative self self total

/ /time seconds seconds calls s/call s/call name
81.89 4.16 4.16 37913758 0.00 0.00 cache_access
16.14 4.98 0.82 1 0.82 5.08 sim_main
1.38 5.05 0.07 6254582 0.00 0.00 update_way_list
0.59 5.08 0.03 1428644 0.00 0.00 dl1_access_fn
0.00 5.08 0.00 711226 0.00 0.00 dl2_access_fn
0.00 5.08 0.00 256830 0.00 0.00 yylex

Over 80% of time spent in one function

Provides calling context (main calls sim main calls cache access) of hot spot

index % time self children called name
0.82 4.26 1/1 main [2]

[1] 100 0 0 82 4 26 1 sim main [1]

g (_ _) p

[1] 100.0 0.82 4.26 1 sim_main [1]
4.18 0.07 36418454/36484188 cache_access <cycle 1> [4]
0.00 0.01 10/10 sys_syscall [9]
0.00 0.00 2935/2967 mem_translate [16]
0 00 0 00 2794/2824 mem newpage [18]

27

0.00 0.00 2794/2824 mem_newpage [18]

Using tools for instrumentation (cont.)

Gprof didn’t give us information on where in the function we were
spending time. (cache_access is a big function; still needle in
haystack)haystack)
Gcov: the GNU coverage tool
— Compile/link with the -fprofile-arcs -ftest-coverage options

• Adds code during compilation to add counters to every control
flow edge (much like our by hand instrumentation) to compute
how frequently each block of code gets executed.

— Run as normal
— For each xyz.c file an xyz.gdna and xyz.gcno file are generated

— Post-process with gcov xyz.cp g y
• Computes execution frequency of each line of code
• Marks with ##### any lines not executed

Useful for making sure that you tested your whole programUseful for making sure that you tested your whole program

28

Example gcov output

Code never executed

14282656: 540: if (cp->hsize) {
#####: 541: int hindex = CACHE_HASH(cp, tag);

-: 542:
#####: 543: for (blk=cp->sets[set].hash[hindex];##### (p [] [];

-: 544: blk;
-: 545: blk=blk->hash_next)
-: 546: {

#####: 547: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
548 t h hit#####: 548: goto cache_hit;

-: 549: }
-: 550: } else {
-: 551: /* linear search the way list */

753030193: 552: for (blk=cp->sets[set].way head;p y_
-: 553: blk;
-: 554: blk=blk->way_next) {

751950759: 555: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
738747537: 556: goto cache_hit;

: 557: }-: 557: }
-: 558: }

Loop executed over 50 interations on average (751950759/14282656)

29

Summary

Multi-core is having more than one processor on the same chip.
— Soon most PCs/servers and game consoles will be multi-core

R l f M ’ l d i— Results from Moore’s law and power constraint

Exploiting multi-core requires parallel programming
— Automatically extracting parallelism too hard for compiler, in general.
— But, can have compiler do much of the bookkeeping for us
— OpenMPOpenMP

Fork-Join model of parallelism
— At parallel region, fork a bunch of threads, do the work in parallel, and

then join, continuing with just one thread
— Expect a speedup of less than P on P processors

• Amdahl’s Law: speedup limited by serial portion of program
• Overhead: forking and joining are not free

30

