
Lectures 24-25

Parallelism
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Pipelining vs. Parallel processing

In both cases, multiple “things” processed by multiple “functional units” 

Pipelining: each thing is broken into a sequence of pieces, where each 
piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single 
functional unit

We will briefly introduce the key ideas behind parallel processing
instruction level parallelism— instruction level parallelism

— data-level parallelism
— thread-level parallelism
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Exploiting Parallelism

Of the computing problems for which performance is important, many 
h  i h t ll lihave inherent parallelism

Best example: computer games
— Graphics, physics, sound, AI etc. can be done separately
— Furthermore, there is often parallelism within each of these:

• Each pixel on the screen’s color can be computed independently• Each pixel on the screen s color can be computed independently
• Non-contacting objects can be updated/simulated independently
• Artificial intelligence of non-human entities done independently

Another example: Google queries
— Every query is independent 
— Google is read-only!!
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Parallelism at the Instruction Level

add $2 <- $3, $4 
or $2 < $2 $4

Dependences?
RAWor $2 <- $2, $4 

lw $6 <- 0($4) 
addi $7 <- $6, 0x5 
sub $8 <- $8, $4 

RAW
WAW
WAR

When can we reorder instructions?

add $2 <- $3, $4 

When should we reorder instructions?

$ $ , $
or $5 <- $2, $4 
lw $6 <- 0($4) 
sub $8 <- $8, $4 
addi $7 < $6 0x5

Surperscalar Processors:
Multiple instructions executing in 
parallel at *same* stage

addi $7 <- $6, 0x5 
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OoO Execution Hardware
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Exploiting Parallelism at the Data Level

Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i 0 ; i < length ; ++ i) {for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}}

Operating on one element at a time

+
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Exploiting Parallelism at the Data  Level (SIMD)

Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i 0 ; i < length ; ++ i) {for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}}

Operate on MULTIPLE elements

+ + + + Single Instruction,
Multiple Data (SIMD)
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Intel SSE/SSE2 as an example of SIMD

• Added new 128 bit registers (XMM0 – XMM7), each can store
4 i l  i i  FP l  (SSE) 4 * 32b— 4 single precision FP values (SSE) 4 * 32b

— 2 double precision FP values (SSE2) 2 * 64b
— 16 byte values (SSE2) 16 * 8b
— 8 word values (SSE2) 8 * 16b
— 4 double word values (SSE2) 4 * 32b
— 1  128-bit integer value (SSE2) 1 * 128b

4.0  (32 bits) 4.0  (32 bits) 3.5  (32 bits) -2.0  (32 bits)

+ 2.3  (32 bits)1.7  (32 bits)2.0  (32 bits)-1.5 (32 bits)

0.3  (32 bits)5.2  (32 bits)6.0  (32 bits)2.5 (32 bits)
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Is it always that easy?

Not always… a more challenging example:

unsigned 
sum_array(unsigned *array, int length) {

int total = 0;
for (int i = 0 ; i < length ; ++ i) {

total += array[i];
}}
return total;

}

Is there parallelism here?
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We first need to restructure the code

unsigned
sum array2(unsigned *array int length) {sum_array2(unsigned array, int length) {

unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {( ; g ; ) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for ( ; i < length ; ++ i) {

total += array[i];
}

t t t lreturn total;
}

11



Then we can write SIMD code for the hot part

unsigned
sum array2(unsigned *array int length) {sum_array2(unsigned array, int length) {

unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {( ; g ; ) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for ( ; i < length ; ++ i) {

total += array[i];
}

t t t lreturn total;
}

12



Thread level parallelism: Multi-Core Processors

Two (or more) complete processors, fabricated on the same silicon chip
Execute instructions from two (or more) programs/threads at same time

#1 #2

IBM Power5
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Multi-Cores are Everywhere

Intel Core Duo in Macs, etc.: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric 
lti  ith 9  (1 l  8 multi-core with 9 cores (1 general-purpose, 8 

special purpose SIMD processors)
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Why Multi-cores Now?

Number of transistors we can put on a chip growing exponentially…
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… and performance growing too…

But power is growing even faster!!
— Power has become limiting factor in current chips
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As programmers, do we care?

What happens if we run a program on a multi-core?

idvoid
array_add(int A[], int B[], int C[], int length) {

int i;
f (i 0 i < l th ++i) {for (i = 0 ; i < length ; ++i) {
C[i] = A[i] + B[i];
}

}}

#1 #2
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What if we want a program to run on both processors?

We have to explicitly tell the machine exactly how to do this
Thi  i  ll d ll l i    i— This is called parallel programming or concurrent programming

There are many parallel/concurrent programming models
— We will look at a relatively simple one: fork-join parallelism
— In CSE 303, you saw a little about threads and explicit synchronization
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Fork/Join Logical Example
1.Fork N-1 threads
2.Break work into N pieces (and do it)
3 Join (N 1) threads3.Join (N-1) threads

void
array add(int A[] int B[] int C[] int length) {array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
int i;
for (i = cpu_num ; i < length ; i += N) {
C[i] = A[i] + B[i];

}
join();

}}

How good is this with caches?How good is this with caches?
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How does this help performance?

Parallel speedup measures improvement from parallelization:

time for best serial version
time for version with p processors

speedup(p)    =

What can we realistically expect?
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Reason #1: Amdahl’s Law

In general, the whole computation is not (easily) parallelizable

Serial regions
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Reason #1: Amdahl’s Law
Suppose a program takes 1 unit of time to execute serially
A fraction of the program, s, is inherently serial (unparallelizable)

New Execution 
Time =

1-s
+ s

p

For example, consider a program that, when executing on one processor, spends
10% of its time in a non-parallelizable region How much faster will this program10% of its time in a non-parallelizable region. How much faster will this program
run on a 3-processor system?

New Execution 
i =

.9T
+ .1T = Speedup =

What is the maximum speedup from parallelization? 

Time + .1T
3

p p
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Reason #2: Overhead

void
array add(int A[] int B[] int C[] int length) {array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
int i;
for (i = cpu_num ; i < length ; i += N) {
C[i] = A[i] + B[i];

}
join();

}}

— Forking and joining is not instantaneous
• Involves communicating between processors• Involves communicating between processors
• May involve calls into the operating system

— Depends on the implementation

New Execution 
Time =

1-s
+ s + overhead(P)

P
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Programming Explicit Thread-level Parallelism

As noted previously, the programmer must specify how to parallelize
But, want path of least effort

Division of labor between the Human and the Compiler
— Humans: good at expressing parallelism, bad at bookkeeping
— Compilers: bad at finding parallelism, good at bookkeeping

Want a way to take serial code and say “Do this in parallel!” without:Want a way to take serial code and say Do this in parallel!  without:
— Having to manage the synchronization between processors
— Having to know a priori how many processors the system has
— Deciding exactly which processor does what
— Replicate the private state of each thread

OpenMP: an industry standard set of compiler extensions
— Works very well for programs with structured parallelism.
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Performance Optimization

Until you are an expert, first write a working version of the program
Then, and only then, begin tuning, first collecting data, and iterate

Oth i   ill lik l  ti i  h t d ’t tt— Otherwise, you will likely optimize what doesn’t matter

“We should forget about small efficiencies, say about 97% of the time: 
premature optimization is the root of all evil.” -- Sir Tony Hoare
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Using tools to do instrumentation

Two GNU tools integrated into the GCC C compiler

Gprof: The GNU profiler
— Compile with the -pg flagp pg g

• This flag causes gcc to keep track of which pieces of source code 
correspond to which chunks of object code and links in a profiling 
signal handler.g

— Run as normal; program requests the operating system to periodically 
send it signals; the signal handler records what instruction was 
executing when the signal was received in a file called gmon.outg g g

— Display results using gprof command
Shows how much time is being spent in each function• Shows how much time is being spent in each function.

• Shows the calling context (the path of function calls) to the hot 
spot.
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Example gprof output

Each sample counts as 0.01 seconds.
%   cumulative   self              self     total           

/ /time   seconds   seconds    calls   s/call   s/call  name    
81.89 4.16     4.16 37913758     0.00     0.00  cache_access
16.14      4.98     0.82        1     0.82     5.08  sim_main
1.38      5.05     0.07  6254582     0.00     0.00  update_way_list
0.59      5.08     0.03  1428644     0.00     0.00  dl1_access_fn
0.00      5.08     0.00   711226     0.00     0.00  dl2_access_fn
0.00      5.08     0.00   256830     0.00     0.00  yylex

Over 80% of time spent in one function

Provides calling context (main calls sim main calls cache access) of hot spot

index % time    self  children    called     name
0.82    4.26       1/1           main [2]

[1] 100 0 0 82 4 26 1 sim main [1]

g ( _ _ ) p

[1]    100.0    0.82    4.26       1             sim_main [1]
4.18    0.07 36418454/36484188   cache_access <cycle 1> [4]
0.00    0.01      10/10          sys_syscall [9]
0.00    0.00    2935/2967        mem_translate [16]
0 00 0 00 2794/2824 mem newpage [18]
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Using tools for instrumentation (cont.)

Gprof didn’t give us information on where in the function we were 
spending time.  (cache_access is a big function; still needle in 
haystack)haystack)
Gcov: the GNU coverage tool
— Compile/link with the -fprofile-arcs -ftest-coverage options

• Adds code during compilation to add counters to every control 
flow edge (much like our by hand instrumentation) to compute 
how frequently each block of code gets executed.

— Run as normal
— For each xyz.c file an xyz.gdna and xyz.gcno file are generated

— Post-process with gcov xyz.cp g y
• Computes execution frequency of each line of code
• Marks with ##### any lines not executed

Useful for making sure that you tested your whole programUseful for making sure that you tested your whole program
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Example gcov output

Code never executed

14282656:  540:  if (cp->hsize) {
#####:  541:      int hindex = CACHE_HASH(cp, tag);

-:  542:
#####:  543:      for (blk=cp->sets[set].hash[hindex];##### ( p [ ] [ ];

-:  544:           blk;
-:  545:           blk=blk->hash_next)
-:  546:          {

#####:  547:              if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
##### 548 t h hit#####:  548:                  goto cache_hit;

-:  549:      }
-:  550:  } else {
-:  551:      /* linear search the way list */

753030193:  552:      for (blk=cp->sets[set].way head;p y_
-:  553:           blk;
-:  554:           blk=blk->way_next)      {

751950759:  555:              if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
738747537:  556:                  goto cache_hit;

: 557: }-:  557:      }
-:  558:  }

Loop executed over 50 interations on average (751950759/14282656)
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Summary

Multi-core is having more than one processor on the same chip.
— Soon most PCs/servers and game consoles will be multi-core

R l  f  M ’  l  d  i— Results from Moore’s law and power constraint

Exploiting multi-core requires parallel programming
— Automatically extracting parallelism too hard for compiler, in general.
— But, can have compiler do much of the bookkeeping for us
— OpenMPOpenMP

Fork-Join model of parallelism
— At parallel region, fork a bunch of threads, do the work in parallel, and 

then join, continuing with just one thread
— Expect a speedup of less than P on P processors

• Amdahl’s Law: speedup limited by serial portion of program
• Overhead: forking and joining are not free
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