
Lecture 17

Today:
— Writes
— Cache performance?

Note: there were no separate slides for lecture 16. That class continued
with the slides from the previous lecture.

12/13/2010

Cache Writing & Performance

We’ll now cover:
— Writing to caches: keeping memory consistent & write-allocation.
— We’ll try to quantify the benefits of different cache designs, and see

how caches affect overall performance.
— We’ll also investigate some main memory organizations that can help

increase memory system performance.
Next, we’ll talk about Virtual Memory, where memory is treated like a
cache of the disk.

2/13/2010 2

Four important questions

1. When we copy a block of data from main memory to
the cache where exactly should we put it?the cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if
it has to be fetched from main memory first?it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To
load a new block from main RAM, we’d have to replace load a new block from main RAM, we d have to replace
one of the existing blocks in the cache... which one?

4. How can write operations be handled by the memory p y y
system?

We’ve answered the first 3. Now, we consider the 4th.

2/13/2010 3

Writing to a cache

Writing to a cache raises several additional issues.
First, let’s assume that the address we want to write to is already loaded
i th h W ’ll i l di t d hin the cache. We’ll assume a simple direct-mapped cache.

Index Tag DataV Address

...

Data

...

110

...

1 11010 42803 428031101 0110

...

If we write a new value to that address, we can store the new data in the
cache, and avoid an expensive main memory access.

M [214] 21763

Index Tag DataV Address Data

Mem[214] = 21763

...

110

...

1 11010 21763 42803

...

1101 0110

...

2/13/2010 4

Inconsistent memory

But now the cache and memory contain different, inconsistent data!
How can we ensure that subsequent loads will return the right value?
This is also problematic if other devices are sharing the main memory, as
in a multiprocessor system.

Index Tag DataV Address

...

110 1 11010 21763

Data

42803

...

1101 0110

... ...

2/13/2010 5

Write-through caches

A write-through cache solves the inconsistency problem by forcing all
writes to update both the cache and the main memory.

Index Tag DataV Address Data

Mem[214] = 21763

Index Tag DataV Address

...

110 1 11010 21763

Data

21763

...

1101 0110

This is simple to implement and keeps the cache and memory consistent.
Wh i hi d?

... ...

Why is this not so good?

2/13/2010 6

Write-through caches

A write-through cache solves the inconsistency problem by forcing all
writes to update both the cache and the main memory.

Index Tag DataV Address Data

Mem[214] = 21763

Index Tag DataV Address

...

110 1 11010 21763

Data

21763

...

1101 0110

This is simple to implement and keeps the cache and memory consistent.
Th b d hi i h f i i i

... ...

The bad thing is that forcing every write to go to main memory, we use
up bandwidth between the cache and the memory.

2/13/2010 7

Write buffers

Write-through caches can result in slow writes, so processors typically
include a write buffer, which queues pending writes to main memory and
permits the CPU to continue permits the CPU to continue.

BufferProducer Consumer

Buffers are commonly used when two devices run at different speeds.
— If a producer generates data too quickly for a consumer to handle, the

extra data is stored in a buffer and the producer can continue on with extra data is stored in a buffer and the producer can continue on with
other tasks, without waiting for the consumer.

— Conversely, if the producer slows down, the consumer can continue
running at full speed as long as there is excess data in the bufferrunning at full speed as long as there is excess data in the buffer.

For us, the producer is the CPU and the consumer is the main memory.

2/13/2010 8

Write-back caches

In a write-back cache, the memory is not updated until the cache block
needs to be replaced (e.g., when loading data into a full cache set).
F l i ht it d t t th h t fi t l i it For example, we might write some data to the cache at first, leaving it
inconsistent with the main memory as shown before.
— The cache block is marked “dirty” to indicate this inconsistency

Mem[214] = 21763

Index Tag DataDirty Address

...

110 1 11010 21763

Data

42803

1000 1110

1101 0110

1225

V

1110

...

8031101 0110

...

Subsequent reads to the same memory address will be serviced by the
cache, which contains the correct, updated data.

2/13/2010 9

Finishing the write back

We don’t need to store the new value back to main memory unless the
cache block gets replaced.
F l d f M [142] hi h t th h For example, on a read from Mem[142], which maps to the same cache
block, the modified cache contents will first be written to main memory.

Index Tag DataDirty Address DataVIndex Tag Data

...

110

Dirty

1 11010 21763

Address Data

21763

1000 1110

1101 0110

1225

V

1

Only then can the cache block be replaced with data from address 142

... ...

Only then can the cache block be replaced with data from address 142.

Index Tag Data Address Data

1000 1110 1225

DirtyV

...

110

...

10001 1225 21763

1000 1110

1101 0110

...

1225

01

2/13/2010 10

Write-back cache discussion

The advantage of write-back caches is that not all write operations need
to access main memory, as with write-through caches.

If i l dd i f tl itt t th it d ’t t k — If a single address is frequently written to, then it doesn’t pay to keep
writing that data through to main memory.

— If several bytes within the same cache block are modified, they will
l f i i i b k ionly force one memory write operation at write-back time.

2/13/2010 11

Write-back cache discussion

Each block in a write-back cache needs a dirty bit to indicate whether or
not it must be saved to main memory before being replaced—otherwise
we might perform unnecessary writebackswe might perform unnecessary writebacks.
Notice the penalty for the main memory access will not be applied until
the execution of some subsequent instruction following the write.

I l h i M [214] ff d l h h— In our example, the write to Mem[214] affected only the cache.
— But the load from Mem[142] resulted in two memory accesses: one to

save data to address 214, and one to load data from address 142.
• The write can be “buffered” as was shown in write-through.

The advantage of write-back caches is that not all write operations need
to access main memory, as with write-through caches.
— If a single address is frequently written to, then it doesn’t pay to keep

writing that data through to main memory.
— If several bytes within the same cache block are modified, they will If several bytes within the same cache block are modified, they will

only force one memory write operation at write-back time.

2/13/2010 12

Write misses

A second scenario is if we try to write to an address that is not already
contained in the cache; this is called a write miss.
L t’ t t t 21763 i t M [1101 0110] b t fi d th t Let’s say we want to store 21763 into Mem[1101 0110] but we find that
address is not currently in the cache.

Index Tag DataV Address

...

110 1 00010 123456

Data

6378

...

1101 0110

When we update Mem[1101 0110] should we also load it into the cache?

... ...

When we update Mem[1101 0110], should we also load it into the cache?

2/13/2010 13

Write around caches (a.k.a. write-no-allocate)

With a write around policy, the write operation goes directly to main
memory without affecting the cache.

Mem[214] = 21763

Index Tag DataV

...

110 1 00010 123456

Address Data

21763

...

1101 0110

... ...

2/13/2010 14

Write around caches (a.k.a. write-no-allocate)

With a write around policy, the write operation goes directly to main
memory without affecting the cache.

Mem[214] = 21763

Index Tag DataV

...

110 1 00010 123456

Address Data

21763

...

1101 0110

Thi i d h d i i b i di l d i i

... ...

This is good when data is written but not immediately used again, in
which case there’s no point to load it into the cache yet.

f (i i i i)for (int i = 0; i < SIZE; i++)
a[i] = i;

2/13/2010 15

Allocate on write

An allocate on write strategy would instead load the newly written data
into the cache.

Mem[214] = 21763

Index Tag DataV Address

...

110 1 11010 21763

Data

21763

...

1101 0110

If h d i d d i i ill b il bl i h h

110

...

1 11010 21763 217631101 0110

...

If that data is needed again soon, it will be available in the cache.

2/13/2010 16

Which is it?

Given the following trace of accesses, can you determine whether the
cache is write-allocate or write-no-allocate?

A A d B di ti t d b i th h i lt l— Assume A and B are distinct, and can be in the cache simultaneously.

Load AMiss

Store B

Store A

Miss

Hit

Load A

Load BMiss

Hit

Load B

Load A

Hit

Hit

2/13/2010 17

Which is it?

Given the following trace of accesses, can you determine whether the
cache is write-allocate or write-no-allocate?

A A d B di ti t d b i th h i lt l— Assume A and B are distinct, and can be in the cache simultaneously.

Load AMiss

Store B

Store A

Miss

Hit

Load A

Load BMiss

Hit

Load B

Load A

Hit

Hit
On a writeOn a write-
allocate cache this
would be a hit

Answer: Write-no-allocate

2/13/2010 18

First Observations

Split Instruction/Data caches:
— Pro: No structural hazard between IF & MEM stages

• A single-ported unified cache stalls fetch during load or store
— Con: Static partitioning of cache between instructions & data

• Bad if working sets unequal: e.g., code/DATA or CODE/datag q g ,

Cache Hierarchies:
Trade off between access time & hit rate— Trade-off between access time & hit rate

• L1 cache can focus on fast access time (okay hit rate)
• L2 cache can focus on good hit rate (okay access time)

— Such hierarchical design is another “big idea”

L1 cacheCPU Main
Memory

L2 cache

2/13/2010 19

Opteron Vital Statistics

L1 cacheCPU MainL2 cache

L1 Caches: Instruction & Data
— 64 kB

L1 cacheCPU
Memory

L2 cache

— 64 byte blocks
— 2-way set associative
— 2 cycle access time

L2 Cache:
— 1 MB

64 b t bl k— 64 byte blocks
— 4-way set associative
— 16 cycle access time (total, not just miss penalty)

Memory
— 200+ cycle access time

2/13/2010 20

Comparing cache organizations

Like many architectural features, caches are evaluated experimentally.
— As always, performance depends on the actual instruction mix, since

diff t ill h diff t ttdifferent programs will have different memory access patterns.
— Simulating or executing real applications is the most accurate way to

measure performance characteristics.
The graphs on the next few slides illustrate the simulated miss rates for
several different cache designs.
— Again lower miss rates are generally better, but remember that the

miss rate is just one component of average memory access time and
execution time.

— You’ll probably do some cache simulations if you take CSE471.

2/13/2010 21

Associativity tradeoffs and miss rates

As we saw last time, higher associativity means more complex hardware.
But a highly-associative cache will also exhibit a lower miss rate.
— Each set has more blocks, so there’s less chance of a conflict between

two addresses which both belong in the same set.
— Overall, this will reduce AMAT and memory stall cycles.

The textbook shows the miss rates decreasing as the associativity
increases.

9%

12%

te

6%

M
is

s
ra

t

0%

3%

Ei htFTO

2/13/2010 22

Eight-wayFour-wayTwo-wayOne-way

Associativity

Cache size and miss rates

The cache size also has a significant impact on performance.
— The larger a cache is, the less chance there will be of a conflict.
— Again this means the miss rate decreases, so the AMAT and number of

memory stall cycles also decrease.
The complete graph depicts the miss rate as a function of both the cache
size and its associativity.

15%

9%

12%

6%

1 KB
2 KB
4 KB
8 KB

M
is

s
ra

te

0%

3%

2/13/2010 23

0%
Eight-wayFour-wayTwo-wayOne-way

Associativity

Block size and miss rates

Finally, this graph shows miss rates relative to the block size and overall
cache size.

S ll bl k d t t k i d t f ti l l lit— Smaller blocks do not take maximum advantage of spatial locality.

40%

35%

1 KB

8 KB

16 KB

30%

25%

20%s
ra

te

16 KB

64 KB
15%

10%

5%

M
is

s

256

5%

0%
64164

Block size (bytes)

2/13/2010 24

Block size and miss rates

Finally, this graph shows miss rates relative to the block size and overall
cache size.

S ll bl k d t t k i d t f ti l l lit— Smaller blocks do not take maximum advantage of spatial locality.
— But if blocks are too large, there will be fewer blocks available, and

more potential misses due to conflicts.

40%

35%

1 KB

8 KB

16 KB

30%

25%

20%s
ra

te

16 KB

64 KB
15%

10%

5%

M
is

s

256

5%

0%
64164

Block size (bytes)

2/13/2010 25

Memory and overall performance

How do cache hits and misses affect overall system performance?
— Assuming a hit time of one CPU clock cycle, program execution will

ti ll h hit (O li t ti l continue normally on a cache hit. (Our earlier computations always
assumed one clock cycle for an instruction fetch or data access.)

— For cache misses, we’ll assume the CPU must stall to wait for a load
f i from main memory.

The total number of stall cycles depends on the number of cache misses
and the miss penalty.

Memory stall cycles = Memory accesses x miss rate x miss penalty

To include stalls due to cache misses in CPU performance equations, we p q ,
have to add them to the “base” number of execution cycles.

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

2/13/2010 26

Performance example

Assume that 33% of the instructions in a program are data accesses. The
cache hit ratio is 97% and the hit time is one cycle, but the miss penalty
is 20 cyclesis 20 cycles.

Memory stall cycles = Memory accesses x Miss rate x Miss penaltyMemory stall cycles = Memory accesses x Miss rate x Miss penalty
= 0.33 I x 0.03 x 20 cycles
= 0.2 I cycles

If I instructions are executed, then the number of wasted cycles will be
0.2 x I.

This code is 1.2 times slower than a program with a “perfect” CPI of 1!

2/13/2010 27

Memory systems are a bottleneck

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

Processor performance traditionally outpaces memory performance, so
the memory system is often the system bottleneck.
For example, with a base CPI of 1, the CPU time from the last page is:

CPU time = (I + 0.2 I) x Cycle time

What if we could double the CPU performance so the CPI becomes 0.5, p ,
but memory performance remained the same?

CPU time = (0.5 I + 0.2 I) x Cycle time

The overall CPU time improves by just 1.2/0.7 = 1.7 times!
Refer back to Amdahl’s Law from textbook page 51.

Speeding up only part of a system has diminishing returns— Speeding up only part of a system has diminishing returns.

2/13/2010 28

Basic main memory design

There are some ways the main memory can be organized to reduce miss
penalties and help with caching.
F t l l t’ th f ll iFor some concrete examples, let’s assume the following
three steps are taken when a cache needs to load data
from the main memory.

1 I k 1 l d dd h RAM

CPU

1. It takes 1 cycle to send an address to the RAM.
2. There is a 15-cycle latency for each RAM access.
3. It takes 1 cycle to return data from the RAM.

Cache

In the setup shown here, the buses from the CPU to the
cache and from the cache to RAM are all one word wide.
If the cache has one-word blocks, then filling a block

i
, g

from RAM (i.e., the miss penalty) would take 17 cycles.

1 + 15 + 1 = 17 clock cycles

Main
Memory

The cache controller has to send the desired address to
the RAM, wait and receive the data.

2/13/2010 29

Miss penalties for larger cache blocks

If the cache has four-word blocks, then loading a single block would need
four individual main memory accesses, and a miss penalty of 68 cycles!

4 x (1 + 15 + 1) = 68 clock cycles

CPU

Cache

Main
Memory

2/13/2010 30

A wider memory

A simple way to decrease the miss
penalty is to widen the memory and
its interface to the cache so we

CPU

its interface to the cache, so we
can read multiple words from RAM
in one shot.
If we could read four words from

Cache
If we could read four words from
the memory at once, a four-word
cache load would need just 17
cyclescycles.

1 + 15 + 1 = 17 cycles

Th di d i h f h

Main
Memory

The disadvantage is the cost of the
wider buses—each additional bit of
memory width requires another
connection to the cacheconnection to the cache.

2/13/2010 31

An interleaved memory

Another approach is to interleave
the memory, or split it into “banks”
that can be accessed individually

CPU

that can be accessed individually.
The main benefit is overlapping the
latencies of accessing each word.
F l if i

Cache
For example, if our main memory
has four banks, each one byte wide,
then we could load four bytes into
a cache block in just 20 cyclesa cache block in just 20 cycles.

1 + 15 + (4 x 1) = 20 cycles

Main Memory

Our buses are still one byte wide
here, so four cycles are needed to
transfer data to the caches.

Bank 0 Bank 1 Bank 2 Bank 3

This is cheaper than implementing
a four-byte bus, but not too much
slower.

2/13/2010 32

Interleaved memory accesses

Load word 1

Clock cycles

15 cycles

Load word 2
Load word 3
Load word 4

Here is a diagram to show how the memory accesses can be interleaved.
— The magenta cycles represent sending an address to a memory bank.

Each memory bank has a 15 cycle latency and it takes another cycle — Each memory bank has a 15-cycle latency, and it takes another cycle
(shown in blue) to return data from the memory.

This is the same basic idea as pipelining!
A d f b k h d — As soon as we request data from one memory bank, we can go ahead
and request data from another bank as well.

— Each individual load takes 17 clock cycles, but four overlapped loads
 20 lrequire just 20 cycles.

2/13/2010 33

Which is better?

Increasing block size can improve hit rate (due to spatial locality), but
transfer time increases. Which cache configuration would be better?

Cache #1 Cache #2

Block size 32-bytes 64-bytes

Miss rate 5% 4%

Assume both caches have single cycle hit times. Memory accesses take
15 cycles, and the memory bus is 8-bytes wide:

Miss rate 5% 4%

y , y y
— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

recall: AMAT = Hit time + (Miss rate x Miss penalty)

2/13/2010 34

recall: AMAT Hit time (Miss rate x Miss penalty)

Which is better?

Increasing block size can improve hit rate (due to spatial locality), but
transfer time increases. Which cache configuration would be better?

Cache #1 Cache #2

Block size 32-bytes 64-bytes

Miss rate 5% 4%

Assume both caches have single cycle hit times. Memory accesses take
15 cycles, and the memory bus is 8-bytes wide:

Miss rate 5% 4%

y , y y
— i.e., an 16-byte memory access takes 18 cycles:

1 (send address) + 15 (memory access) + 2 (two 8-byte transfers)

C h #1Cache #1:
Miss Penalty = 1 + 15 + 32B/8B = 20 cycles

AMAT = 1 + (.05 * 20) = 2 Cache #2:

recall: AMAT = Hit time + (Miss rate x Miss penalty)

Miss Penalty = 1 + 15 + 64B/8B = 24 cycles
AMAT = 1 + (.04 * 24) = ~1.96

2/13/2010 35

recall: AMAT Hit time (Miss rate x Miss penalty)

Summary

Writing to a cache poses a couple of interesting issues.
— Write-through and write-back policies keep the cache consistent with

main memory in different ways for write hitsmain memory in different ways for write hits.
— Write-around and allocate-on-write are two strategies to handle write

misses, differing in whether updated data is loaded into the cache.
Memory system performance depends upon the cache hit time miss rateMemory system performance depends upon the cache hit time, miss rate
and miss penalty, as well as the actual program being executed.
— We can use these numbers to find the average memory access time.
— We can also revise our CPU time formula to include stall cycles.We can also revise our CPU time formula to include stall cycles.

AMAT = Hit time + (Miss rate x Miss penalty)

Memory stall cycles = Memory accesses x miss rate x miss penaltyy y y p y

CPU time = (CPU execution cycles + Memory stall cycles) x Cycle time

The organization of a memory system affects its performance.
— The cache size, block size, and associativity affect the miss rate.
— We can organize the main memory to help reduce miss penalties. For

example, interleaved memory supports pipelined data accesses.

2/13/2010 36

